コード例 #1
0
def hart85(start_train, end_train, start_test, end_test, train_elec):

    #Start training
    data.set_window(start_train, end_train)
    elec = data.buildings[1].elec
    hart = hart_85.Hart85()
    hart.train(train_elec, sample_period=1)

    #Start disaggregating
    data.set_window(start_test, end_test)
    disag_filename = './build/disagg_sum_hart85_{}_k.h5'.format(
        len(train_elec.meters))
    output = HDFDataStore(disag_filename, 'w')
    hart.disaggregate(elec.mains(), output)
    output.close()

    disag = DataSet(disag_filename)
    disag_elec = disag.buildings[1].elec
    disag_elec.plot()
    plt.show()
    plt.title("HART85")

    #Calculate F1-Score
    f1 = f1_score(disag_elec, train_elec)
    f1.index = disag_elec.get_labels(f1.index)
    f1.plot(kind='barh')
    plt.ylabel('appliance')
    plt.xlabel('f-score')
    plt.title("Hart85")
    plt.show()
コード例 #2
0
ファイル: main.py プロジェクト: pilillo/nilmtk-greend-tests
	def plot_f_score(self, disag_filename):
		plt.figure()
		from nilmtk.metrics import f1_score
		disag = DataSet(disag_filename)
		disag_elec = disag.buildings[building].elec
		f1 = f1_score(disag_elec, test_elec)
		f1.index = disag_elec.get_labels(f1.index)
		f1.plot(kind='barh')
		plt.ylabel('appliance');
		plt.xlabel('f-score');
		plt.title(type(self.model).__name__);
コード例 #3
0
 def plot_f_score(self, disag_filename):
     plt.figure()
     from nilmtk.metrics import f1_score
     disag = DataSet(disag_filename)
     disag_elec = disag.buildings[building].elec
     f1 = f1_score(disag_elec, test_elec)
     f1.index = disag_elec.get_labels(f1.index)
     f1.plot(kind='barh')
     plt.ylabel('appliance')
     plt.xlabel('f-score')
     plt.title(type(self.model).__name__)
コード例 #4
0
def co(start_train, end_train, start_test, end_test, train_elec):

    #Start training
    data.set_window(start_train, end_train)
    elec = data.buildings[1].elec
    co = CombinatorialOptimisation()
    co.train(train_elec,
             ac_type='active',
             physical_quantity='power',
             sample_period=1)

    #Start disaggregating
    data.set_window(start_test, end_test)
    disag_filename = './build/disagg_sum_co_{}_k.h5'.format(
        len(train_elec.meters))
    output = HDFDataStore(disag_filename, 'w')
    co.disaggregate(elec.mains(),
                    output,
                    ac_type='active',
                    physical_quantity='power',
                    sample_period=1)
    output.close()
    dates_dict = {
        "start_train": start_train,
        "end_train": end_train,
        "start_test": start_test,
        "end_test": end_test
    }
    # write test and train timeframe into json file
    with open(disag_filename + ".json", 'w') as dates_file:
        json.dump(dates_dict, dates_file)

    #Calulate F1-Score
    disag = DataSet(disag_filename)
    disag_elec = disag.buildings[1].elec
    disag_elec.plot()
    plt.title("CO")
    plt.show()

    f1 = f1_score(disag_elec, train_elec)
    f1.index = disag_elec.get_labels(f1.index)
    f1.plot(kind='barh')
    plt.ylabel('appliance')
    plt.xlabel('f-score')
    plt.title("CO")
    plt.show()
コード例 #5
0
def mle(start_train, end_train, start_test, end_test, train_elec):

    # #Start training
    data.set_window(start_train, end_train)
    elec = data.buildings[1].elec
    mle = maximum_likelihood_estimation.MLE()
    mle.sample_period = "1s"
    mle.train(train_elec)

    #Start disaggregating
    data.set_window(start_test, end_test)
    disag_filename = './build/disagg_sum_mle_{}_k.h5'.format(
        len(train_elec.meters))
    output = HDFDataStore(disag_filename, 'w')
    mle.disaggregate(elec.mains(), output)
    output.close()
    dates_dict = {
        "start_train": start_train,
        "end_train": end_train,
        "start_test": start_test,
        "end_test": end_test
    }
    # write test and train timeframe into json file
    with open(disag_filename + ".json", 'w') as dates_file:
        json.dump(dates_dict, dates_file)

    disag = DataSet(disag_filename)
    disag_elec = disag.buildings[1].elec
    disag_elec.plot()
    plt.show()
    plt.title("FHMM")

    #Calculate F1-Score
    f1 = f1_score(disag_elec, train_elec)
    f1.index = disag_elec.get_labels(f1.index)
    f1.plot(kind='barh')
    plt.ylabel('appliance')
    plt.xlabel('f-score')
    plt.title("FHMM")
    plt.show()
コード例 #6
0
building_number = 3
disag_filename = join(data_dir, 'disag-fhmm' + str(building_number) + '.h5')

data = DataSet(join(data_dir, 'redd.h5'))
print("Loading building " + str(building_number))
elec = data.buildings[building_number].elec

top_train_elec = elec.submeters().select_top_k(k=5)
fhmm = fhmm_exact.FHMM()
fhmm.train(top_train_elec)

output = HDFDataStore(disag_filename, 'w')
fhmm.disaggregate(elec.mains(), output)
output.close()

### f1score fhmm
disag = DataSet(disag_filename)
disag_elec = disag.buildings[building_number].elec

f1 = f1_score(disag_elec, elec)
f1.index = disag_elec.get_labels(f1.index)
f1.plot(kind='barh')
plt.ylabel('appliance')
plt.xlabel('f-score')
plt.title("FHMM")
plt.tight_layout()
plt.savefig(join(data_dir, 'f1-fhmm' + str(building_number) + '.png'))
disag.store.close()
####
print("Finishing building " + str(building_number))
コード例 #7
0
print(middleTimeStr)

train.set_window(end=middleTimeStr)
test.set_window(start=middleTimeStr)

train_elec = train.buildings[building_number].elec
test_elec = test.buildings[building_number].elec

top_train_elec = train_elec.submeters().select_top_k(k=5)

fhmm = fhmm_exact.FHMM() #mk change this later  to default
fhmm.train(top_train_elec, sample_period=60, resample=True)

outputAddress = "/nilmtk/data/iawe_449_3.h5"
output = HDFDataStore(outputAddress, 'w')
fhmm.disaggregate(test_elec.mains(), output, sample_period=60, resample=True)
output.close()

disag = DataSet(outputAddress) #load FHMM prediction
disag_elec = disag.buildings[building_number].elec
#disag_elec.plot() # plot all disaggregated data
f1 = f1_score(disag_elec, test_elec)
f1.index = disag_elec.get_labels(f1.index)
f1.plot(kind='barh')

disag.store.window = TimeFrame(start='2013-07-10 18:00:00-05:00', end='2013-07-17 04:00:00-05:00')
disag.buildings[building_number].elec.plot() # plot all disaggregated data



コード例 #8
0
data_dir = '/data/REDD'
building_number = 3
disag_filename = join(data_dir, 'disag-fhmm' + str(building_number) + '.h5')

data = DataSet(join(data_dir, 'redd.h5'))
print("Loading building " + str(building_number))
elec = data.buildings[building_number].elec

top_train_elec = elec.submeters().select_top_k(k=5)
fhmm = fhmm_exact.FHMM()
fhmm.train(top_train_elec)

output = HDFDataStore(disag_filename, 'w')
fhmm.disaggregate(elec.mains(), output)
output.close()

### f1score fhmm
disag = DataSet(disag_filename)
disag_elec = disag.buildings[building_number].elec

f1 = f1_score(disag_elec, elec)
f1.index = disag_elec.get_labels(f1.index)
f1.plot(kind='barh')
plt.ylabel('appliance');
plt.xlabel('f-score');
plt.title("FHMM");
plt.savefig(join(data_dir, 'f1-fhmm' + str(building_number) + '.png'))
disag.store.close()
####
print("Finishing building " + str(building_number))
コード例 #9
0
ファイル: metrics.py プロジェクト: t7reyeslua/NILM-Loc
def f1_score(disag, original):
    f1_score = nilmtk_metrics.f1_score(disag, original)
    return f1_score
コード例 #10
0
output = HDFDataStore(str(dum_outfile), 'w')
print('\n== dum.disaggregate(dataset.buildings[%d].mains(), output)' %
      (disag_building))
dum.disaggregate(dataset.buildings[disag_building].elec.mains(), output)
output.close()

### Results
print('\n== Plotting Dummy disaggregation results...')
da_data = DataSet(str(dum_outfile))
da_elec = da_data.buildings[disag_building].elec
ax = da_elec.plot()
ax.set_title("B%d Dummy disaggregation results" % (disag_building))
plt.savefig('results/%s__b%d__elec__dummy.png' %
            (dataset_name, disag_building))
plt.clf()
f1 = f1_score(da_elec, dataset.buildings[disag_building].elec)
f1.index = da_elec.get_labels([int(i) for i in f1.index])
ax = f1.plot(kind='barh')
ax.set_ylabel('appliance')
ax.set_xlabel('f-score')
ax.set_title("B%d Dummy disaggregation accuracy" % (disag_building))
plt.savefig('results/%s__b%d__fscore__dummy.png' %
            (dataset_name, disag_building))
plt.clf()
da_data.store.close()

## CO training and disaggregation

### Training
co = CombinatorialOptimisation()
print('\n== co.train(dataset.buildings[%d].elec)' % (train_building))
コード例 #11
0
def f1_score(disag, original):
    f1_score = nilmtk_metrics.f1_score(disag, original)
    return f1_score
コード例 #12
0
def test_all(path_to_directory):
    '''
    path_to_directory: Contains the h5 files on which the tests are supposed to be run
    '''

    check_directory_exists(path_to_directory)

#files=[f for f in listdir(path_to_directory) and '.h5' in f and '.swp' not in f]
    files = [f for f in listdir(path_to_directory) if isfile(join(path_to_directory, f)) and
         '.h5' in f and '.swp' not in f]
    files.sort()

    print ("Datasets collected and sorted. Processing...")


    try:
        for i, file in enumerate(files):
            current_file=DataSet(join(path_to_directory, file))
            
            print ("Printing metadata for current file...done.")
            print_dict(current_file.metadata)
            print (" Loading file # ", i, " : ", file, ". Please wait.")
            for building_number in range(1, len(current_file.buildings)+1):
    #Examine metadata for a single house
                elec=current_file.buildings[building_number].elec
                print ("The dataset being processed is : ", elec.dataset())
                print ("Metadata for current file: ")
                print_dict(current_file.buildings[building_number].metadata)
                print ("Appliance label information: ", elec.appliance_label())
                #print (elec.appliances)
                print ("Appliances:- ")
                for i in elec.appliances:
                    print (i)

                print ("Examining sub-metered appliances...")
                
                
                print ("Collecting stats on meters...Done.")
                print (elec._collect_stats_on_all_meters)
                
                print ("Timeframe: ", elec.get_timeframe())
                
                
                
                
                print ("Available power AC types: ", elec.available_power_ac_types())
                
                print ("Clearing cache...done.")
                elec.clear_cache()
                
                print ("Testing if there are meters from multiple buildings. Result returned by method: ", elec.contains_meters_from_multiple_buildings())
                
                # TODO: Find a better way to test the correlation function
                # print ("Testing the correlation function. ", elec.correlation(elec))
                
                
                print ("List of disabled meters: ", elec.disabled_meters)
                print ("Trying to determine the dominant appliance: ")
                try:
                    elec.dominant_appliance()
                except RuntimeError:
                    print ('''More than one dominant appliance in MeterGroup! (The dominant appliance per meter should be manually specified in the metadata. If it isn't and if there are multiple appliances for a meter then NILMTK assumes all appliances on that meter are dominant. NILMTK can't automatically distinguish between multiple appliances on the same meter (at least, not without using NILM!))''')
                    pass
                print ("Dropout rate: ", elec.dropout_rate())
                try:
                    print ("Calculating energy per meter:")
                    print (elec.energy_per_meter())
                
                    print ("Calculating total entropy")
                    print (elec.entropy())
                
                    print ("Calculating entropy per meter: ")
                    print (elec.entropy_per_meter())
                except ValueError:
                    print ("ValueError: Total size of array must remain unchanged.")
                    pass
                
                print ("Calculating fraction per meter.")
                print (elec.fraction_per_meter())

                
                

#print ("Average energy per period: ", elec.average_energy_per_period())
                
                
                print ("Executing functions...")
                lis=[]
                func=""
                '''for function in dir(elec):
                    try:
                        start=time.time()
                        if ("__" not in function or "dataframe_of_meters" not in function):
                            func=getattr(elec, function)
                        print ("Currently executing ", function, ". Please wait...")
                        print (func())
                        # print ("cProfile stats - printed")
                        # cProfile.run("func")
                        end=time.time()
                        print ("Time taken for the entire process : ", (end - start))
                    except AttributeError:
                        print ("Attribute error occured. ")
                    except TypeError:
                        lis.append(function)
                        print ("Warning: TypeError")
                        pass'''
                
                print ("Plotting wiring hierarchy of meters....")
                elec.draw_wiring_graph()
                ## DISAGGREGATION STARTS HERE
                appliance_type="unknown"
    #TODO : appliance_type should cycle through all appliances and check for each of them. For this, use a list.
                selected_appliance=nilmtk.global_meter_group.select_using_appliances(type=appliance_type)
                appliance_restricted = MeterGroup(selected_appliance.meters)
                if ((appliance_restricted.proportion_of_upstream_total_per_meter()) is not None):
                    proportion_per_appliance = appliance_restricted.proportion_of_upstream_total_per_meter()


                    proportion_per_appliance.plot(kind='bar');
                    plt.title('Appliance energy as proportion of total building energy');
                    plt.ylabel('Proportion');
                    plt.xlabel('Appliance (<appliance instance>, <building instance>, <dataset name>)');
                    selected_appliance.select(building=building_number).total_energy()
                    selected_appliance.select(building=1).plot();


                    appliance_restricted = MeterGroup(selected_appliance.meters)
                    daily_energy = pd.DataFrame([meter.average_energy_per_period(offset_alias='D')
                                     for meter in appliance_restricted.meters])

                    daily_energy.plot(kind='hist');
                    plt.title('Histogram of daily energy');
                    plt.xlabel('energy (kWh)');
                    plt.ylabel('Occurences');
                    plt.legend().set_visible(False)
                    
                    current_file.store.window=TimeFrame(start='2012-04-01 00:00:00-05:00', end='2012-04-02 00:00:00-05:00')
                    #elec.plot();

                    fraction = elec.submeters().fraction_per_meter().dropna()

                    labels = elec.get_appliance_labels(fraction.index)
                    plt.figure(figsize=(8,8))
                    fraction.plot(kind='pie', labels=labels);

                    elec.select_using_appliances(category='heating')
                    elec.select_using_appliances(category='single-phase induction motor')


                    co = CombinatorialOptimisation()
                    co.train(elec)

                    for model in co.model:
                        print_dict(model)


                    disag_filename = join(data_dir, 'ampds-disag.h5')
                    output = HDFDataStore(disag_filename, 'w')
                    co.disaggregate(elec.mains(), output)
                    output.close()



                    disag = DataSet(disag_filename)








                    disag_elec = disag.buildings[building_number].elec

                    f1 = f1_score(disag_elec, elec)
                    f1.index = disag_elec.get_appliance_labels(f1.index)
                    f1.plot(kind='bar')
                    plt.xlabel('appliance');
                    plt.ylabel('f-score');
                    disag_elec.plot()

                    disag.store.close()
    except AttributeError:
        print ("AttributeError occured while executing. This means that the value returned by  proportion_per_appliance = appliance_restricted.proportion_of_upstream_total_per_meter() is None")
        pass