コード例 #1
0
    def _fit(self, dataset):
        self.dataset = dataset
        # Use intercept as explanatory variable
        self.parameters_["tested_vars"] = np.ones(
            (self.inputs_["z_maps"].shape[0], 1))
        self.parameters_["confounding_vars"] = None

        _, t_map, _ = permuted_ols(
            self.parameters_["tested_vars"],
            self.inputs_["z_maps"],
            confounding_vars=self.parameters_["confounding_vars"],
            model_intercept=False,  # modeled by tested_vars
            n_perm=0,
            two_sided_test=self.two_sided,
            random_state=42,
            n_jobs=1,
            verbose=0,
        )

        # Convert t to z, preserving signs
        dof = self.parameters_["tested_vars"].shape[0] - self.parameters_[
            "tested_vars"].shape[1]
        z_map = t_to_z(t_map, dof)
        images = {
            "t": _boolean_unmask(t_map.squeeze(),
                                 self.inputs_["aggressive_mask"]),
            "z": _boolean_unmask(z_map.squeeze(),
                                 self.inputs_["aggressive_mask"]),
        }
        return images
コード例 #2
0
    def _fit(self, dataset):
        self.dataset = dataset
        self.masker = self.masker or dataset.masker

        if not isinstance(self.masker, NiftiMasker):
            LGR.warning(
                f"A {type(self.masker)} mask has been detected. "
                "Masks which average across voxels will likely produce biased results when used "
                "with this Estimator.")

        est = pymare.estimators.VarianceBasedLikelihoodEstimator(
            method=self.method)

        pymare_dset = pymare.Dataset(y=self.inputs_["beta_maps"],
                                     v=self.inputs_["varcope_maps"])
        est.fit_dataset(pymare_dset)
        est_summary = est.summary()
        results = {
            "tau2":
            _boolean_unmask(est_summary.tau2.squeeze(),
                            self.inputs_["aggressive_mask"]),
            "z":
            _boolean_unmask(est_summary.get_fe_stats()["z"].squeeze(),
                            self.inputs_["aggressive_mask"]),
            "p":
            _boolean_unmask(est_summary.get_fe_stats()["p"].squeeze(),
                            self.inputs_["aggressive_mask"]),
            "est":
            _boolean_unmask(est_summary.get_fe_stats()["est"].squeeze(),
                            self.inputs_["aggressive_mask"]),
        }
        return results
コード例 #3
0
    def _fit(self, dataset):
        self.dataset = dataset
        self.masker = self.masker or dataset.masker

        sample_sizes = np.array(
            [np.mean(n) for n in self.inputs_["sample_sizes"]])
        n_maps = np.tile(sample_sizes,
                         (self.inputs_["beta_maps"].shape[1], 1)).T
        pymare_dset = pymare.Dataset(y=self.inputs_["beta_maps"], n=n_maps)
        est = pymare.estimators.SampleSizeBasedLikelihoodEstimator(
            method=self.method)
        est.fit_dataset(pymare_dset)
        est_summary = est.summary()
        results = {
            "tau2":
            _boolean_unmask(est_summary.tau2.squeeze(),
                            self.inputs_["aggressive_mask"]),
            "z":
            _boolean_unmask(est_summary.get_fe_stats()["z"].squeeze(),
                            self.inputs_["aggressive_mask"]),
            "p":
            _boolean_unmask(est_summary.get_fe_stats()["p"].squeeze(),
                            self.inputs_["aggressive_mask"]),
            "est":
            _boolean_unmask(est_summary.get_fe_stats()["est"].squeeze(),
                            self.inputs_["aggressive_mask"]),
        }
        return results
コード例 #4
0
    def _fit(self, dataset):
        self.dataset = dataset
        self.masker = self.masker or dataset.masker
        if not isinstance(self.masker, NiftiMasker):
            LGR.warning(
                f"A {type(self.masker)} mask has been detected. "
                "Masks which average across voxels will likely produce biased results when used "
                "with this Estimator.")

        pymare_dset = pymare.Dataset(y=self.inputs_["beta_maps"],
                                     v=self.inputs_["varcope_maps"])
        est = pymare.estimators.WeightedLeastSquares(tau2=self.tau2)
        est.fit_dataset(pymare_dset)
        est_summary = est.summary()
        # tau2 is an float, not a map, so it can't go in the results dictionary
        results = {
            "z":
            _boolean_unmask(est_summary.get_fe_stats()["z"].squeeze(),
                            self.inputs_["aggressive_mask"]),
            "p":
            _boolean_unmask(est_summary.get_fe_stats()["p"].squeeze(),
                            self.inputs_["aggressive_mask"]),
            "est":
            _boolean_unmask(est_summary.get_fe_stats()["est"].squeeze(),
                            self.inputs_["aggressive_mask"]),
        }
        return results
コード例 #5
0
    def _fit(self, dataset):
        self.dataset = dataset
        self.masker = self.masker or dataset.masker
        if not isinstance(self.masker, NiftiMasker):
            raise ValueError(
                f"A {type(self.masker)} mask has been detected. "
                "Only NiftiMaskers are allowed for this Estimator. "
                "This is because aggregation, such as averaging values across ROIs, "
                "will produce invalid results.")

        est = pymare.estimators.StoufferCombinationTest()

        if self.use_sample_size:
            sample_sizes = np.array(
                [np.mean(n) for n in self.inputs_["sample_sizes"]])
            weights = np.sqrt(sample_sizes)
            weight_maps = np.tile(weights,
                                  (self.inputs_["z_maps"].shape[1], 1)).T
            pymare_dset = pymare.Dataset(y=self.inputs_["z_maps"],
                                         v=weight_maps)
        else:
            pymare_dset = pymare.Dataset(y=self.inputs_["z_maps"])

        est.fit_dataset(pymare_dset)
        est_summary = est.summary()

        results = {
            "z":
            _boolean_unmask(est_summary.z.squeeze(),
                            self.inputs_["aggressive_mask"]),
            "p":
            _boolean_unmask(est_summary.p.squeeze(),
                            self.inputs_["aggressive_mask"]),
        }
        return results
コード例 #6
0
    def _fit(self, dataset):
        self.dataset = dataset
        self.masker = self.masker or dataset.masker
        if not isinstance(self.masker, NiftiMasker):
            raise ValueError(
                f"A {type(self.masker)} mask has been detected. "
                "Only NiftiMaskers are allowed for this Estimator. "
                "This is because aggregation, such as averaging values across ROIs, "
                "will produce invalid results.")

        pymare_dset = pymare.Dataset(y=self.inputs_["z_maps"])
        est = pymare.estimators.FisherCombinationTest()
        est.fit_dataset(pymare_dset)
        est_summary = est.summary()
        results = {
            "z":
            _boolean_unmask(est_summary.z.squeeze(),
                            self.inputs_["aggressive_mask"]),
            "p":
            _boolean_unmask(est_summary.p.squeeze(),
                            self.inputs_["aggressive_mask"]),
        }
        return results
コード例 #7
0
    def correct_fwe_montecarlo(self, result, n_iters=10000, n_cores=1):
        """Perform FWE correction using the max-value permutation method.

        .. versionchanged:: 0.0.8

            * [FIX] Remove single-dimensional entries of each array of returns (:obj:`dict`).

        .. versionadded:: 0.0.4

        Only call this method from within a Corrector.

        Parameters
        ----------
        result : :obj:`~nimare.results.MetaResult`
            Result object from an ALE meta-analysis.
        n_iters : :obj:`int`, optional
            The number of iterations to run in estimating the null distribution.
            Default is 10000.
        n_cores : :obj:`int`, optional
            Number of cores to use for parallelization.
            If <=0, defaults to using all available cores. Default is 1.

        Returns
        -------
        images : :obj:`dict`
            Dictionary of 1D arrays corresponding to masked images generated by
            the correction procedure. The following arrays are generated by
            this method: 'z_vthresh', 'p_level-voxel', 'z_level-voxel', and
            'logp_level-cluster'.

        See Also
        --------
        nimare.correct.FWECorrector : The Corrector from which to call this method.
        nilearn.mass_univariate.permuted_ols : The function used for this IBMA.

        Examples
        --------
        >>> meta = PermutedOLS()
        >>> result = meta.fit(dset)
        >>> corrector = FWECorrector(method='montecarlo',
                                     n_iters=5, n_cores=1)
        >>> cresult = corrector.transform(result)
        """
        n_cores = _check_ncores(n_cores)

        log_p_map, t_map, _ = permuted_ols(
            self.parameters_["tested_vars"],
            self.inputs_["z_maps"],
            confounding_vars=self.parameters_["confounding_vars"],
            model_intercept=False,  # modeled by tested_vars
            n_perm=n_iters,
            two_sided_test=self.two_sided,
            random_state=42,
            n_jobs=n_cores,
            verbose=0,
        )

        # Fill complete maps
        p_map = np.power(10.0, -log_p_map)

        # Convert p to z, preserving signs
        sign = np.sign(t_map)
        sign[sign == 0] = 1
        z_map = p_to_z(p_map, tail="two") * sign
        images = {
            "logp_level-voxel":
            _boolean_unmask(log_p_map.squeeze(),
                            self.inputs_["aggressive_mask"]),
            "z_level-voxel":
            _boolean_unmask(z_map.squeeze(), self.inputs_["aggressive_mask"]),
        }
        return images