from nimblenet.cost_functions import cross_entropy_cost from nimblenet.learning_algorithms import * from nimblenet.neuralnet import NeuralNet from nimblenet.preprocessing import construct_preprocessor, standarize from nimblenet.data_structures import Instance from nimblenet.tools import print_test # Training set dataset = [ Instance([0, 0], [0]), Instance([1, 0], [1]), Instance([0, 1], [1]), Instance([1, 1], [1]) ] preprocess = construct_preprocessor(dataset, [standarize]) training_data = preprocess(dataset) test_data = preprocess(dataset) cost_function = cross_entropy_cost settings = { # Required settings "n_inputs": 2, # Number of network input signals "layers": [(3, sigmoid_function), (1, sigmoid_function)], # [ (number_of_neurons, activation_function) ] # The last pair in the list dictate the number of output signals # Optional settings "initial_bias_value": 0.0, "weights_low": -0.1, # Lower bound on the initial weight value "weights_high": 0.1, # Upper bound on the initial weight value
accel_scaled_z) last_x = K * (last_x + gyro_x_delta) + (K1 * rotation_x) last_y = K * (last_y + gyro_y_delta) + (K1 * rotation_y) #[X1,Y1,X2,Y2] nSlice.append(last_x) nSlice.append(last_y) #When N values have been recorded if len(nSlice) == N: ##----------Predictions------------ #Throws nSlice to Belle inData = [Instance(nSlice)] preprocess = construct_preprocessor(inData, [standarize]) prediction_set = preprocess(inData) #Prints a prediction! #HIGH LOW = Bicep Curl! #LOW HIGH = Trash! #print(str(nSlice[0]) + ", " + str(nSlice[1])) neuralOut = network.predict(inData) print(neuralOut) exponents = np.floor(np.log10(np.abs(neuralOut))) ##----------Total Movement Calculation-------- temp_x = nSlice[0] temp_y = nSlice[1] total = 0 for i in range(len(nSlice)): if i % 2 == 0:
from nimblenet.activation_functions import sigmoid_function, tanh_function, linear_function, LReLU_function, ReLU_function, elliot_function, symmetric_elliot_function, softmax_function, softplus_function, softsign_function from nimblenet.cost_functions import sum_squared_error, cross_entropy_cost, hellinger_distance, softmax_neg_loss from nimblenet.learning_algorithms import backpropagation, scaled_conjugate_gradient, scipyoptimize, resilient_backpropagation from nimblenet.evaluation_functions import binary_accuracy from nimblenet.neuralnet import NeuralNet from nimblenet.preprocessing import construct_preprocessor, standarize, replace_nan, whiten from nimblenet.data_structures import Instance from nimblenet.tools import print_test # Training sets dataset = [ Instance( [0,0], [0] ), Instance( [1,0], [1] ), Instance( [0,1], [1] ), Instance( [1,1], [0] ) ] preprocess = construct_preprocessor( dataset, [standarize] ) training_data = preprocess( dataset ) test_data = preprocess( dataset ) cost_function = cross_entropy_cost settings = { # Required settings "n_inputs" : 2, # Number of network input signals "layers" : [ (3, sigmoid_function), (1, sigmoid_function) ], # [ (number_of_neurons, activation_function) ] # The last pair in the list dictate the number of output signals # Optional settings "weights_low" : -0.1, # Lower bound on the initial weight value "weights_high" : 0.1, # Upper bound on the initial weight value }