コード例 #1
0
ファイル: test_save.py プロジェクト: fabianp/nipy
def test_save3():
    # A test to ensure that when a file is saved, the affine
    # and the data agree. In this case, things don't agree:
    # i) the pixdim is off
    # ii) makes the affine off
    step = np.array([3.45,2.3,4.5,6.9])
    shape = (13,5,7,3)
    mni_xyz = mni_csm(3).coord_names
    cmap = AT(CS('jkli'),
              CS(('t',) + mni_xyz[::-1]),
              from_matvec(np.diag([0,3,5,1]), step))
    data = np.random.standard_normal(shape)
    img = api.Image(data, cmap)
    # with InTemporaryDirectory():
    with InTemporaryDirectory():
        save_image(img, TMP_FNAME)
        tmp = load_image(TMP_FNAME)
        # Detach image from file so we can delete it
        data = tmp.get_data().copy()
        img2 = api.Image(data, tmp.coordmap, tmp.metadata)
        del tmp
    assert_equal(tuple([img.shape[l] for l in [3,2,1,0]]), img2.shape)
    a = np.transpose(np.asarray(img), [3,2,1,0])
    assert_false(np.allclose(img.affine, img2.affine))
    assert_true(np.allclose(a, img2.get_data()))
コード例 #2
0
ファイル: test_save.py プロジェクト: fabianp/nipy
def test_save4():
    # Same as test_save3 except we have reordered the 'ijk' input axes.
    shape = (13,5,7,3)
    step = np.array([3.45,2.3,4.5,6.9])
    # When the input coords are in the 'ljki' order, the affines get
    # rearranged.  Note that the 'start' below, must be 0 for
    # non-spatial dimensions, because we have no way to store them in
    # most cases.  For example, a 'start' of [1,5,3,1] would be lost on
    # reload
    mni_xyz = mni_csm(3).coord_names
    cmap = AT(CS('tkji'),
              CS((('t',) + mni_xyz[::-1])),
              from_matvec(np.diag([2., 3, 5, 1]), step))
    data = np.random.standard_normal(shape)
    img = api.Image(data, cmap)
    with InTemporaryDirectory():
        save_image(img, TMP_FNAME)
        tmp = load_image(TMP_FNAME)
        data = tmp.get_data().copy()
        # Detach image from file so we can delete it
        img2 = api.Image(data, tmp.coordmap, tmp.metadata)
        del tmp
    P = np.array([[0,0,0,1,0],
                  [0,0,1,0,0],
                  [0,1,0,0,0],
                  [1,0,0,0,0],
                  [0,0,0,0,1]])
    res = np.dot(P, np.dot(img.affine, P.T))
    # the step part of the affine should be set correctly
    assert_array_almost_equal(res[:4,:4], img2.affine[:4,:4])
    # start in the spatial dimensions should be set correctly
    assert_array_almost_equal(res[:3,-1], img2.affine[:3,-1])
    # start in the time dimension should be 3.45 as in img, because NIFTI stores
    # the time offset in hdr[``toffset``]
    assert_not_equal(res[3,-1], img2.affine[3,-1])
    assert_equal(res[3,-1], 3.45)
    # shapes should be reversed because img has coordinates reversed
    assert_equal(img.shape[::-1], img2.shape)
    # data should be transposed because coordinates are reversed
    assert_array_almost_equal(
           np.transpose(np.asarray(img2),[3,2,1,0]),
           np.asarray(img))
    # coordinate names should be reversed as well
    assert_equal(img2.coordmap.function_domain.coord_names,
                 img.coordmap.function_domain.coord_names[::-1])
    assert_equal(img2.coordmap.function_domain.coord_names,
                 ('i', 'j', 'k', 't'))
コード例 #3
0
ファイル: test_save.py プロジェクト: sashka/nipy
def test_save4():
    # Same as test_save3 except we have reordered the 'ijk' input axes.
    shape = (13, 5, 7, 3)
    step = np.array([3.45, 2.3, 4.5, 6.9])
    # When the input coords are in the 'ljki' order, the affines get
    # rearranged.  Note that the 'start' below, must be 0 for
    # non-spatial dimensions, because we have no way to store them in
    # most cases.  For example, a 'start' of [1,5,3,1] would be lost on
    # reload
    mni_xyz = mni_csm(3).coord_names
    cmap = AT(CS('tkji'), CS((('t', ) + mni_xyz[::-1])),
              from_matvec(np.diag([2., 3, 5, 1]), step))
    data = np.random.standard_normal(shape)
    img = api.Image(data, cmap)
    with InTemporaryDirectory():
        save_image(img, TMP_FNAME)
        tmp = load_image(TMP_FNAME)
        data = tmp.get_data().copy()
        # Detach image from file so we can delete it
        img2 = api.Image(data, tmp.coordmap, tmp.metadata)
        del tmp
    P = np.array([[0, 0, 0, 1, 0], [0, 0, 1, 0, 0], [0, 1, 0, 0, 0],
                  [1, 0, 0, 0, 0], [0, 0, 0, 0, 1]])
    res = np.dot(P, np.dot(img.affine, P.T))
    # the step part of the affine should be set correctly
    assert_array_almost_equal(res[:4, :4], img2.affine[:4, :4])
    # start in the spatial dimensions should be set correctly
    assert_array_almost_equal(res[:3, -1], img2.affine[:3, -1])
    # start in the time dimension should be 3.45 as in img, because NIFTI stores
    # the time offset in hdr[``toffset``]
    assert_not_equal(res[3, -1], img2.affine[3, -1])
    assert_equal(res[3, -1], 3.45)
    # shapes should be reversed because img has coordinates reversed
    assert_equal(img.shape[::-1], img2.shape)
    # data should be transposed because coordinates are reversed
    assert_array_almost_equal(np.transpose(img2.get_data(), [3, 2, 1, 0]),
                              img.get_data())
    # coordinate names should be reversed as well
    assert_equal(img2.coordmap.function_domain.coord_names,
                 img.coordmap.function_domain.coord_names[::-1])
    assert_equal(img2.coordmap.function_domain.coord_names,
                 ('i', 'j', 'k', 't'))
コード例 #4
0
ファイル: test_save.py プロジェクト: sashka/nipy
def test_save3():
    # A test to ensure that when a file is saved, the affine
    # and the data agree. In this case, things don't agree:
    # i) the pixdim is off
    # ii) makes the affine off
    step = np.array([3.45, 2.3, 4.5, 6.9])
    shape = (13, 5, 7, 3)
    mni_xyz = mni_csm(3).coord_names
    cmap = AT(CS('jkli'), CS(('t', ) + mni_xyz[::-1]),
              from_matvec(np.diag([0, 3, 5, 1]), step))
    data = np.random.standard_normal(shape)
    img = api.Image(data, cmap)
    # with InTemporaryDirectory():
    with InTemporaryDirectory():
        save_image(img, TMP_FNAME)
        tmp = load_image(TMP_FNAME)
        # Detach image from file so we can delete it
        data = tmp.get_data().copy()
        img2 = api.Image(data, tmp.coordmap, tmp.metadata)
        del tmp
    assert_equal(tuple([img.shape[l] for l in [3, 2, 1, 0]]), img2.shape)
    a = np.transpose(img.get_data(), [3, 2, 1, 0])
    assert_false(np.allclose(img.affine, img2.affine))
    assert_true(np.allclose(a, img2.get_data()))