def test_em_gmm_heterosc(verbose=0): # testing the model in very ellipsoidal data: compute the big values # for several values of k and check that the macimal is 1 or 2 # generate some data dim = 2 x = nr.randn(100, dim) x[:50, :] += 3 # x[:,0]*=10 # estimate different GMMs of that data maxiter = 100 delta = 1.0e-4 bic = np.zeros(5) for k in range(1, 6): lgmm = GMM(k, dim) lgmm.initialize(x) bic[k - 1] = lgmm.estimate(x, maxiter, delta, 0) if verbose: print "bic of the %d-classes model" % k, bic if verbose: # plot the result z = lgmm.map_label(x) from test_bgmm import plot2D plot2D(x, lgmm, z, show=1, verbose=0) assert bic[4] < bic[1]
def test_em_gmm_largedim(verbose=0): # testing the GMM model in larger dimensions # generate some data dim = 10 x = nr.randn(100, dim) x[:30, :] += 1 # estimate different GMMs of that data maxiter = 100 delta = 1.0e-4 for k in range(1, 3): lgmm = GMM(k, dim) lgmm.initialize(x) bic = lgmm.estimate(x, maxiter, delta, verbose) if verbose: print "bic of the %d-classes model" % k, bic z = lgmm.map_label(x) # define the correct labelling u = np.zeros(100) u[:30] = 1 # check the correlation between the true labelling # and the computed one eta = np.absolute(np.dot(z - z.mean(), u - u.mean()) / (np.std(z) * np.std(u) * 100)) assert_true(eta > 0.3)
def test_em_gmm_diag(verbose=0): # Computing the BIC value for GMMs with different number of classes, # with diagonal covariance models The BIC should maximal for a # number of classes of 1 or 2 # generate some data dim = 2 x = np.concatenate((nr.randn(1000, dim), 3 + 2 * nr.randn(1000, dim))) # estimate different GMMs of that data maxiter = 100 delta = 1.0e-8 prec_type = "diag" bic = np.zeros(5) for k in range(1, 6): lgmm = GMM(k, dim, prec_type) lgmm.initialize(x) bic[k - 1] = lgmm.estimate(x, maxiter, delta, verbose) if verbose: print "bic of the %d-classes model" % k, bic z = lgmm.map_label(x) assert_true((z.max() + 1 == lgmm.k) & (bic[4] < bic[1]))
def test_em_loglike1(): dim = 1 k = 3 n = 1000 x = nr.randn(n, dim) lgmm = GMM(k, dim) lgmm.initialize(x) lgmm.estimate(x) ll = lgmm.average_log_like(x) ent = 0.5 * (1 + np.log(2 * np.pi)) print ll, ent assert_true(np.absolute(ll + ent) < 3.0 / np.sqrt(n))
def test_em_loglike4(): dim = 5 k = 1 n = 1000 scale = 3.0 offset = 4.0 x = offset + scale * nr.randn(n, dim) lgmm = GMM(k, dim) lgmm.initialize(x) lgmm.estimate(x) ll = lgmm.average_log_like(x) ent = dim * 0.5 * (1 + np.log(2 * np.pi * scale ** 2)) print ll, ent assert_true(np.absolute(ll + ent) < dim * 3.0 / np.sqrt(n))
def test_em_loglike2(): """ """ dim = 1 k = 1 n = 1000 scale = 3. offset = 4. x = offset + scale * nr.randn(n,dim) lgmm = GMM(k,dim) lgmm.initialize(x) lgmm.estimate(x) ll = lgmm.average_log_like(x) ent = 0.5*(1+np.log(2*np.pi*scale**2)) print ll, ent assert np.absolute(ll+ent)<3./np.sqrt(n)
def test_em_loglike6(): """ """ dim = 1 k = 1 n = 100 offset = 3.0 x = nr.randn(n, dim) y = offset + nr.randn(n, dim) lgmm = GMM(k, dim) lgmm.initialize(x) lgmm.estimate(x) ll1 = lgmm.average_log_like(x) ll2 = lgmm.average_log_like(y) ent = 0.5 * (1 + np.log(2 * np.pi)) dkl = 0.5 * offset ** 2 print ll2, ll1, dkl assert_true(ll2 < ll1)
def test_em_gmm_cv(verbose=0): # Comparison of different GMMs using cross-validation # generate some data dim = 2 xtrain = np.concatenate((nr.randn(100, dim), 3 + 2 * nr.randn(100, dim))) xtest = np.concatenate((nr.randn(1000, dim), 3 + 2 * nr.randn(1000, dim))) # estimate different GMMs for xtrain, and test it on xtest prec_type = "full" k = 2 maxiter = 300 delta = 1.0e-4 ll = [] # model 1 lgmm = GMM(k, dim, prec_type) lgmm.initialize(xtrain) bic = lgmm.estimate(xtrain, maxiter, delta) ll.append(lgmm.test(xtest).mean()) prec_type = "diag" # model 2 lgmm = GMM(k, dim, prec_type) lgmm.initialize(xtrain) bic = lgmm.estimate(xtrain, maxiter, delta) ll.append(lgmm.test(xtest).mean()) for k in [1, 3, 10]: lgmm = GMM(k, dim, prec_type) lgmm.initialize(xtrain) bic = lgmm.estimate(xtrain, maxiter, delta) ll.append(lgmm.test(xtest).mean()) assert_true(ll[4] < ll[1])
def test_em_gmm_full(verbose=0): # Computing the BIC value for different configurations of a GMM with # ful diagonal matrices The BIC should be maximal for a number of # classes of 1 or 2 # generate some data dim = 2 x = np.concatenate((nr.randn(100, dim), 3 + 2 * nr.randn(100, dim))) # estimate different GMMs of that data maxiter = 100 delta = 1.0e-4 bic = np.zeros(5) for k in range(1, 6): lgmm = GMM(k, dim) lgmm.initialize(x) bic[k - 1] = lgmm.estimate(x, maxiter, delta, verbose) if verbose: print "bic of the %d-classes model" % k, bic z = lgmm.map_label(x) assert_true(bic[4] < bic[1])