コード例 #1
0
def fmri_qc_workflow(dataset, settings, name='funcMRIQC'):
    """
    The fMRI qc workflow

    .. workflow::

      import os.path as op
      from mriqc.workflows.functional import fmri_qc_workflow
      datadir = op.abspath('data')
      wf = fmri_qc_workflow([op.join(datadir, 'sub-001/func/sub-001_task-rest_bold.nii.gz')],
                            settings={'bids_dir': datadir,
                                      'output_dir': op.abspath('out'),
                                      'no_sub': True})


    """

    workflow = pe.Workflow(name=name)

    biggest_file_gb = settings.get("biggest_file_size_gb", 1)

    # Define workflow, inputs and outputs
    # 0. Get data, put it in RAS orientation
    inputnode = pe.Node(niu.IdentityInterface(fields=['in_file']), name='inputnode')
    WFLOGGER.info('Building fMRI QC workflow, datasets list: %s',
                  [str(Path(d).relative_to(settings['bids_dir']))
                   for d in sorted(dataset)])
    inputnode.iterables = [('in_file', dataset)]

    outputnode = pe.Node(niu.IdentityInterface(
        fields=['qc', 'mosaic', 'out_group', 'out_dvars',
                'out_fd']), name='outputnode')

    non_steady_state_detector = pe.Node(nac.NonSteadyStateDetector(),
                                        name="non_steady_state_detector")

    sanitize = pe.Node(niutils.SanitizeImage(), name="sanitize",
                       mem_gb=biggest_file_gb * 4.0)
    sanitize.inputs.max_32bit = settings.get("float32", DEFAULTS['float32'])

    # Workflow --------------------------------------------------------

    # 1. HMC: head motion correct
    if settings.get('hmc_fsl', False):
        hmcwf = hmc_mcflirt(settings)
    else:
        hmcwf = hmc_afni(settings,
                         st_correct=settings.get('correct_slice_timing', False),
                         despike=settings.get('despike', False),
                         deoblique=settings.get('deoblique', False),
                         start_idx=settings.get('start_idx', None),
                         stop_idx=settings.get('stop_idx', None))

    # Set HMC settings
    hmcwf.inputs.inputnode.fd_radius = settings.get('fd_radius', DEFAULT_FD_RADIUS)

    mean = pe.Node(afni.TStat(                   # 2. Compute mean fmri
        options='-mean', outputtype='NIFTI_GZ'), name='mean',
        mem_gb=biggest_file_gb * 1.5)
    skullstrip_epi = fmri_bmsk_workflow(use_bet=True)

    # EPI to MNI registration
    ema = epi_mni_align(settings)

    # Compute TSNR using nipype implementation
    tsnr = pe.Node(nac.TSNR(), name='compute_tsnr', mem_gb=biggest_file_gb * 2.5)

    # 7. Compute IQMs
    iqmswf = compute_iqms(settings)
    # Reports
    repwf = individual_reports(settings)

    workflow.connect([
        (inputnode, iqmswf, [('in_file', 'inputnode.in_file')]),
        (inputnode, sanitize, [('in_file', 'in_file')]),
        (inputnode, non_steady_state_detector, [('in_file', 'in_file')]),
        (non_steady_state_detector, sanitize, [('n_volumes_to_discard', 'n_volumes_to_discard')]),
        (sanitize, hmcwf, [('out_file', 'inputnode.in_file')]),
        (mean, skullstrip_epi, [('out_file', 'inputnode.in_file')]),
        (hmcwf, mean, [('outputnode.out_file', 'in_file')]),
        (hmcwf, tsnr, [('outputnode.out_file', 'in_file')]),
        (mean, ema, [('out_file', 'inputnode.epi_mean')]),
        (skullstrip_epi, ema, [('outputnode.out_file', 'inputnode.epi_mask')]),
        (sanitize, iqmswf, [('out_file', 'inputnode.in_ras')]),
        (mean, iqmswf, [('out_file', 'inputnode.epi_mean')]),
        (hmcwf, iqmswf, [('outputnode.out_file', 'inputnode.hmc_epi'),
                         ('outputnode.out_fd', 'inputnode.hmc_fd')]),
        (skullstrip_epi, iqmswf, [('outputnode.out_file', 'inputnode.brainmask')]),
        (tsnr, iqmswf, [('tsnr_file', 'inputnode.in_tsnr')]),
        (sanitize, repwf, [('out_file', 'inputnode.in_ras')]),
        (mean, repwf, [('out_file', 'inputnode.epi_mean')]),
        (tsnr, repwf, [('stddev_file', 'inputnode.in_stddev')]),
        (skullstrip_epi, repwf, [('outputnode.out_file', 'inputnode.brainmask')]),
        (hmcwf, repwf, [('outputnode.out_fd', 'inputnode.hmc_fd'),
                        ('outputnode.out_file', 'inputnode.hmc_epi')]),
        (ema, repwf, [('outputnode.epi_parc', 'inputnode.epi_parc'),
                      ('outputnode.report', 'inputnode.mni_report')]),
        (non_steady_state_detector, iqmswf, [('n_volumes_to_discard', 'inputnode.exclude_index')]),
        (iqmswf, repwf, [('outputnode.out_file', 'inputnode.in_iqms'),
                         ('outputnode.out_dvars', 'inputnode.in_dvars'),
                         ('outputnode.outliers', 'inputnode.outliers')]),
        (hmcwf, outputnode, [('outputnode.out_fd', 'out_fd')]),
    ])

    if settings.get('fft_spikes_detector', False):
        workflow.connect([
            (iqmswf, repwf, [('outputnode.out_spikes', 'inputnode.in_spikes'),
                             ('outputnode.out_fft', 'inputnode.in_fft')]),
        ])

    if settings.get('ica', False):
        melodic = pe.Node(nws.MELODICRPT(no_bet=True,
                                         no_mask=True,
                                         no_mm=True,
                                         compress_report=False,
                                         generate_report=True),
                          name="ICA", mem_gb=max(biggest_file_gb * 5, 8))
        workflow.connect([
            (sanitize, melodic, [('out_file', 'in_files')]),
            (skullstrip_epi, melodic, [('outputnode.out_file', 'report_mask')]),
            (melodic, repwf, [('out_report', 'inputnode.ica_report')])
        ])

    # Upload metrics
    if not settings.get('no_sub', False):
        from ..interfaces.webapi import UploadIQMs
        upldwf = pe.Node(UploadIQMs(), name='UploadMetrics')
        upldwf.inputs.url = settings.get('webapi_url')
        if settings.get('webapi_port'):
            upldwf.inputs.port = settings.get('webapi_port')
        upldwf.inputs.email = settings.get('email')
        upldwf.inputs.strict = settings.get('upload_strict', False)

        workflow.connect([
            (iqmswf, upldwf, [('outputnode.out_file', 'in_iqms')]),
        ])

    return workflow
コード例 #2
0
def init_bold_confs_wf(mem_gb, metadata, name="bold_confs_wf"):
    """
    This workflow calculates confounds for a BOLD series, and aggregates them
    into a :abbr:`TSV (tab-separated value)` file, for use as nuisance
    regressors in a :abbr:`GLM (general linear model)`.

    The following confounds are calculated, with column headings in parentheses:

    #. Region-wise average signal (``CSF``, ``WhiteMatter``, ``GlobalSignal``)
    #. DVARS - standard, nonstandard, and voxel-wise standard variants
       (``stdDVARS``, ``non-stdDVARS``, ``vx-wisestdDVARS``)
    #. Framewise displacement, based on MCFLIRT motion parameters
       (``FramewiseDisplacement``)
    #. Temporal CompCor (``tCompCorXX``)
    #. Anatomical CompCor (``aCompCorXX``)
    #. Cosine basis set for high-pass filtering w/ 0.008 Hz cut-off
       (``CosineXX``)
    #. Non-steady-state volumes (``NonSteadyStateXX``)
    #. Estimated head-motion parameters, in mm and rad
       (``X``, ``Y``, ``Z``, ``RotX``, ``RotY``, ``RotZ``)


    Prior to estimating aCompCor and tCompCor, non-steady-state volumes are
    censored and high-pass filtered using a :abbr:`DCT (discrete cosine
    transform)` basis.
    The cosine basis, as well as one regressor per censored volume, are included
    for convenience.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold.confounds import init_bold_confs_wf
        wf = init_bold_confs_wf(
            mem_gb=1,
            metadata={})

    **Parameters**

        mem_gb : float
            Size of BOLD file in GB - please note that this size
            should be calculated after resamplings that may extend
            the FoV
        metadata : dict
            BIDS metadata for BOLD file
        name : str
            Name of workflow (default: ``bold_confs_wf``)

    **Inputs**

        bold
            BOLD image, after the prescribed corrections (STC, HMC and SDC)
            when available.
        bold_mask
            BOLD series mask
        movpar_file
            SPM-formatted motion parameters file
        t1_mask
            Mask of the skull-stripped template image
        t1_tpms
            List of tissue probability maps in T1w space
        t1_bold_xform
            Affine matrix that maps the T1w space into alignment with
            the native BOLD space

    **Outputs**

        confounds_file
            TSV of all aggregated confounds
        rois_report
            Reportlet visualizing white-matter/CSF mask used for aCompCor,
            the ROI for tCompCor and the BOLD brain mask.

    """

    inputnode = pe.Node(niu.IdentityInterface(
        fields=['bold', 'bold_mask', 'movpar_file', 't1_mask', 't1_tpms',
                't1_bold_xform']),
        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(
        fields=['confounds_file']),
        name='outputnode')

    # Get masks ready in T1w space
    acc_tpm = pe.Node(AddTPMs(indices=[0, 2]), name='tpms_add_csf_wm')  # acc stands for aCompCor
    csf_roi = pe.Node(TPM2ROI(erode_mm=0, mask_erode_mm=30), name='csf_roi')
    wm_roi = pe.Node(TPM2ROI(
        erode_prop=0.6, mask_erode_prop=0.6**3),  # 0.6 = radius; 0.6^3 = volume
        name='wm_roi')
    acc_roi = pe.Node(TPM2ROI(
        erode_prop=0.6, mask_erode_prop=0.6**3),  # 0.6 = radius; 0.6^3 = volume
        name='acc_roi')

    # Map ROIs in T1w space into BOLD space
    csf_tfm = pe.Node(ApplyTransforms(interpolation='NearestNeighbor', float=True),
                      name='csf_tfm', mem_gb=0.1)
    wm_tfm = pe.Node(ApplyTransforms(interpolation='NearestNeighbor', float=True),
                     name='wm_tfm', mem_gb=0.1)
    acc_tfm = pe.Node(ApplyTransforms(interpolation='NearestNeighbor', float=True),
                      name='acc_tfm', mem_gb=0.1)
    tcc_tfm = pe.Node(ApplyTransforms(interpolation='NearestNeighbor', float=True),
                      name='tcc_tfm', mem_gb=0.1)

    # Ensure ROIs don't go off-limits (reduced FoV)
    csf_msk = pe.Node(niu.Function(function=_maskroi), name='csf_msk')
    wm_msk = pe.Node(niu.Function(function=_maskroi), name='wm_msk')
    acc_msk = pe.Node(niu.Function(function=_maskroi), name='acc_msk')
    tcc_msk = pe.Node(niu.Function(function=_maskroi), name='tcc_msk')

    # DVARS
    dvars = pe.Node(nac.ComputeDVARS(save_all=True, remove_zerovariance=True),
                    name="dvars", mem_gb=mem_gb)

    # Frame displacement
    fdisp = pe.Node(nac.FramewiseDisplacement(parameter_source="SPM"),
                    name="fdisp", mem_gb=mem_gb)

    # a/t-CompCor
    non_steady_state = pe.Node(nac.NonSteadyStateDetector(), name='non_steady_state')
    tcompcor = pe.Node(TCompCor(
        components_file='tcompcor.tsv', pre_filter='cosine', save_pre_filter=True,
        percentile_threshold=.05), name="tcompcor", mem_gb=mem_gb)

    acompcor = pe.Node(ACompCor(
        components_file='acompcor.tsv', pre_filter='cosine', save_pre_filter=True),
        name="acompcor", mem_gb=mem_gb)

    # Set TR if present
    if 'RepetitionTime' in metadata:
        tcompcor.inputs.repetition_time = metadata['RepetitionTime']
        acompcor.inputs.repetition_time = metadata['RepetitionTime']

    # Global and segment regressors
    mrg_lbl = pe.Node(niu.Merge(3), name='merge_rois', run_without_submitting=True)
    signals = pe.Node(SignalExtraction(class_labels=["CSF", "WhiteMatter", "GlobalSignal"]),
                      name="signals", mem_gb=mem_gb)

    # Arrange confounds
    add_header = pe.Node(AddTSVHeader(columns=["X", "Y", "Z", "RotX", "RotY", "RotZ"]),
                         name="add_header", mem_gb=0.01, run_without_submitting=True)
    concat = pe.Node(GatherConfounds(), name="concat", mem_gb=0.01, run_without_submitting=True)

    # Generate reportlet
    mrg_compcor = pe.Node(niu.Merge(2), name='merge_compcor', run_without_submitting=True)
    rois_plot = pe.Node(ROIsPlot(colors=['r', 'b', 'magenta'], generate_report=True),
                        name='rois_plot')

    ds_report_bold_rois = pe.Node(
        DerivativesDataSink(suffix='rois'),
        name='ds_report_bold_rois', run_without_submitting=True,
        mem_gb=DEFAULT_MEMORY_MIN_GB)

    def _pick_csf(files):
        return files[0]

    def _pick_wm(files):
        return files[-1]

    workflow = pe.Workflow(name=name)
    workflow.connect([
        # Massage ROIs (in T1w space)
        (inputnode, acc_tpm, [('t1_tpms', 'in_files')]),
        (inputnode, csf_roi, [(('t1_tpms', _pick_csf), 'in_tpm'),
                              ('t1_mask', 'in_mask')]),
        (inputnode, wm_roi, [(('t1_tpms', _pick_wm), 'in_tpm'),
                             ('t1_mask', 'in_mask')]),
        (inputnode, acc_roi, [('t1_mask', 'in_mask')]),
        (acc_tpm, acc_roi, [('out_file', 'in_tpm')]),
        # Map ROIs to BOLD
        (inputnode, csf_tfm, [('bold_mask', 'reference_image'),
                              ('t1_bold_xform', 'transforms')]),
        (csf_roi, csf_tfm, [('roi_file', 'input_image')]),
        (inputnode, wm_tfm, [('bold_mask', 'reference_image'),
                             ('t1_bold_xform', 'transforms')]),
        (wm_roi, wm_tfm, [('roi_file', 'input_image')]),
        (inputnode, acc_tfm, [('bold_mask', 'reference_image'),
                              ('t1_bold_xform', 'transforms')]),
        (acc_roi, acc_tfm, [('roi_file', 'input_image')]),
        (inputnode, tcc_tfm, [('bold_mask', 'reference_image'),
                              ('t1_bold_xform', 'transforms')]),
        (csf_roi, tcc_tfm, [('eroded_mask', 'input_image')]),
        # Mask ROIs with bold_mask
        (inputnode, csf_msk, [('bold_mask', 'in_mask')]),
        (inputnode, wm_msk, [('bold_mask', 'in_mask')]),
        (inputnode, acc_msk, [('bold_mask', 'in_mask')]),
        (inputnode, tcc_msk, [('bold_mask', 'in_mask')]),
        # connect inputnode to each non-anatomical confound node
        (inputnode, dvars, [('bold', 'in_file'),
                            ('bold_mask', 'in_mask')]),
        (inputnode, fdisp, [('movpar_file', 'in_file')]),

        # Calculate nonsteady state
        (inputnode, non_steady_state, [('bold', 'in_file')]),

        # tCompCor
        (inputnode, tcompcor, [('bold', 'realigned_file')]),
        (non_steady_state, tcompcor, [('n_volumes_to_discard', 'ignore_initial_volumes')]),
        (tcc_tfm, tcc_msk, [('output_image', 'roi_file')]),
        (tcc_msk, tcompcor, [('out', 'mask_files')]),

        # aCompCor
        (inputnode, acompcor, [('bold', 'realigned_file')]),
        (non_steady_state, acompcor, [('n_volumes_to_discard', 'ignore_initial_volumes')]),
        (acc_tfm, acc_msk, [('output_image', 'roi_file')]),
        (acc_msk, acompcor, [('out', 'mask_files')]),

        # Global signals extraction (constrained by anatomy)
        (inputnode, signals, [('bold', 'in_file')]),
        (csf_tfm, csf_msk, [('output_image', 'roi_file')]),
        (csf_msk, mrg_lbl, [('out', 'in1')]),
        (wm_tfm, wm_msk, [('output_image', 'roi_file')]),
        (wm_msk, mrg_lbl, [('out', 'in2')]),
        (inputnode, mrg_lbl, [('bold_mask', 'in3')]),
        (mrg_lbl, signals, [('out', 'label_files')]),

        # Collate computed confounds together
        (inputnode, add_header, [('movpar_file', 'in_file')]),
        (signals, concat, [('out_file', 'signals')]),
        (dvars, concat, [('out_all', 'dvars')]),
        (fdisp, concat, [('out_file', 'fd')]),
        (tcompcor, concat, [('components_file', 'tcompcor'),
                            ('pre_filter_file', 'cos_basis')]),
        (acompcor, concat, [('components_file', 'acompcor')]),
        (add_header, concat, [('out_file', 'motion')]),

        # Set outputs
        (concat, outputnode, [('confounds_file', 'confounds_file')]),
        (inputnode, rois_plot, [('bold', 'in_file'),
                                ('bold_mask', 'in_mask')]),
        (tcompcor, mrg_compcor, [('high_variance_masks', 'in1')]),
        (acc_msk, mrg_compcor, [('out', 'in2')]),
        (mrg_compcor, rois_plot, [('out', 'in_rois')]),
        (rois_plot, ds_report_bold_rois, [('out_report', 'in_file')]),
    ])

    return workflow