class input_spec(TraitedSpec): experiment = traits.Str() model = traits.Str() data_dir = traits.Directory(exists=True) proc_dir = traits.Directory(exists=True) subject = traits.Str() run_tuple = traits.Tuple(traits.Str(), traits.Str())
class prepareDockerPathsInputSpec(BaseInterfaceInputSpec): local_T2ws_paths = InputMultiPath( File(desc='input T2ws paths', mandatory=True, exists=True)) local_masks_paths = InputMultiPath( File(desc='input masks paths', mandatory=True, exists=True)) local_dir = traits.Directory(mandatory=True) docker_dir = traits.Directory('/fetaldata', mandatory=True)
class input_spec(TraitedSpec): run = traits.Tuple() data_dir = traits.Directory(exists=True) proc_dir = traits.Directory(exists=True) experiment = traits.Str() sb_template = traits.Str() ts_template = traits.Str() crop_frames = traits.Int(0, usedefault=True)
class input_spec(TraitedSpec): run = traits.Tuple() data_dir = traits.Directory(exists=True) proc_dir = traits.Directory(exists=True) experiment = traits.Str() sb_template = traits.Str() ts_template = traits.Str() # TODO this default should be defined at the project/experiment level crop_frames = traits.Int(0, usedefault=True)
class _DerivativesDataSinkInputSpec(DynamicTraitedSpec, BaseInterfaceInputSpec): base_directory = traits.Directory( desc="Path to the base directory for storing data.") check_hdr = traits.Bool(True, usedefault=True, desc="fix headers of NIfTI outputs") compress = InputMultiObject( traits.Either(None, traits.Bool), usedefault=True, desc= "whether ``in_file`` should be compressed (True), uncompressed (False) " "or left unmodified (None, default).", ) data_dtype = Str( desc="NumPy datatype to coerce NIfTI data to, or `source` to" "match the input file dtype") dismiss_entities = InputMultiObject( traits.Either(None, Str), usedefault=True, desc="a list entities that will not be propagated from the source file", ) in_file = InputMultiObject(File(exists=True), mandatory=True, desc="the object to be saved") meta_dict = traits.DictStrAny( desc="an input dictionary containing metadata") source_file = InputMultiObject( File(exists=False), mandatory=True, desc="the source file(s) to extract entities from")
class _DerivativesDataSinkInputSpec(DynamicTraitedSpec, BaseInterfaceInputSpec): base_directory = traits.Directory( desc='Path to the base directory for storing data.') check_hdr = traits.Bool(True, usedefault=True, desc='fix headers of NIfTI outputs') compress = traits.Bool( desc="force compression (True) or uncompression (False)" " of the output file (default: same as input)") desc = Str('', usedefault=True, desc='Label for description field') extra_values = traits.List(Str) in_file = InputMultiObject(File(exists=True), mandatory=True, desc='the object to be saved') keep_dtype = traits.Bool(False, usedefault=True, desc='keep datatype suffix') meta_dict = traits.DictStrAny( desc='an input dictionary containing metadata') source_file = File(exists=False, mandatory=True, desc='the input func file') space = Str('', usedefault=True, desc='Label for space field') suffix = Str('', usedefault=True, desc='suffix appended to source_file')
class DerivativesDataSinkInputSpec(BaseInterfaceInputSpec): base_directory = traits.Directory( desc='Path to the base directory for storing data.') in_file = File(exists=True, mandatory=True) source_file = File(exists=False, mandatory=True, desc='the input func file')
class BycycleNodeInputSpec(BaseInterfaceInputSpec): """Input interface for bycycle.""" # Input/Output input_dir = traits.Directory( argstr='%s', exists=True, resolve=True, desc= 'Input directory containing timeseries and/or spectra .npy files to read.', mandatory=True, position=0) output_dir = traits.Directory( argstr='%s', exists=False, resolve=True, desc='Output directory to write results and BIDS derivatives to write.', mandatory=True, position=1) # Required arguments sig = traits.File(mandatory=True, usedefault=False) fs = traits.Float(mandatory=True, usedefault=False) f_range_bycycle = traits.Tuple(mandatory=True, usedefault=False) # Optional arguments center_extrema = traits.Str('peak', mandatory=False, usedefault=True) burst_method = traits.Str('cycles', mandatory=False, usedefault=True) amp_fraction_threshold = traits.Float(0.0, mandatory=False, usedefault=True) amp_consistency_threshold = traits.Float(0.5, mandatory=False, usedefault=True) period_consistency_threshold = traits.Float(0.5, mandatory=False, usedefault=True) monotonicity_threshold = traits.Float(0.8, mandatory=False, usedefault=True) min_n_cycles = traits.Int(3, mandatory=False, usedefault=True) burst_fraction_threshold = traits.Float(1.0, mandatory=False, usedefault=True) axis = traits.Str('None', mandatory=False, usedefault=True) n_jobs = traits.Int(1, mandatory=False, usedefault=True)
class output_spec(TraitedSpec): subject = traits.Str() session = traits.Str() run = traits.Str() anat_file = traits.File(exists=True) mask_file = traits.File(exists=True) beta_file = traits.File(exists=True) ols_file = traits.File(exists=True) error_file = traits.File(exists=True) output_path = traits.Directory()
class CombineStatsInputSpec(BaseInterfaceInputSpec): bids_dir = traits.Directory(exists=True, mandatory=True) validate = traits.Bool(default=True, usedefault=True) row_keys = traits.ListStr(mandatory=True) invariants = traits.DictStrAny() strict = traits.Bool(default=True, usedefault=True) index = traits.Str() ignore = traits.Either(traits.ListStr, traits.Set(trait=traits.Str), traits.Tuple(trait=traits.Str))
class output_spec(TraitedSpec): subject = traits.Str() session = traits.Str() run = traits.Str() seg_file = traits.File(exists=True) surf_file = traits.File(exists=True) mask_file = traits.File(exists=True) ts_file = traits.File(exists=True) noise_file = traits.File(Exists=True) mc_file = traits.File(exists=True) output_path = traits.Directory()
class DerivativesDataSinkInputSpec(BaseInterfaceInputSpec): base_directory = traits.Directory( desc='Path to the base directory for storing data.') in_file = InputMultiPath(File(), exists=True, mandatory=True, desc='the object to be saved') source_file = File(exists=True, mandatory=True, desc='the input func file') suffix = traits.Str('', mandatory=True, desc='suffix appended to source_file')
class input_spec(TraitedSpec): subject = traits.Str() session = traits.Str() run = traits.Str() data_dir = traits.Directory(exists=True) info = traits.Dict() seg_file = traits.File(exists=True) surf_file = traits.File(exists=True) ts_file = traits.File(exists=True) mask_file = traits.File(exists=True) noise_file = traits.File(exists=True) mc_file = traits.File(exists=True)
class output_spec(TraitedSpec): out_file = traits.File(exists=True) out_plot = traits.File(exists=True) mask_file = traits.File(exists=True) mask_plot = traits.File(exists=True) noise_file = traits.File(exists=True) noise_plot = traits.File(exists=True) mean_file = traits.File(exists=True) mean_plot = traits.File(exists=True) tsnr_file = traits.File(exists=True) tsnr_plot = traits.File(exists=True) output_path = traits.Directory()
class DerivativesDataSinkInputSpec(BaseInterfaceInputSpec): base_directory = traits.Directory( desc='Path to the base directory for storing data.') betaseries_file = File(exists=True, mandatory=True, desc='the betaseries file') in_file = File(exists=True, mandatory=True) source_file = File(exists=False, mandatory=True, desc='the input func file') suffix = traits.Str('', mandatory=True, desc='suffix appended to source_file') extra_values = traits.List(traits.Str)
class ReportNodeInputSpec(BaseInterfaceInputSpec): """Input interface for reporting.""" output_dir = traits.Directory( argstr='%s', exists=False, resolve=True, desc='Output directory to write results and BIDS derivatives to write.', mandatory=True, position=1) fms = traits.Any() df_features = traits.Any() _fit_args = traits.Any()
class output_spec(TraitedSpec): run_tuple = traits.Tuple() subject = traits.Str() session = traits.Str() run = traits.Str() sb_file = traits.File(exists=True) ts_file = traits.File(exists=True) ts_frames = traits.List(traits.File(exists=True)) ts_plot = traits.File(exists=True) reg_file = traits.File(exists=True) seg_file = traits.File(exists=True) anat_file = traits.File(exists=True) mask_file = traits.File(exists=True) output_path = traits.Directory()
class DerivativesDataSinkInputSpec(BaseInterfaceInputSpec): base_directory = traits.Directory( desc='Path to the base directory for storing data.') in_file = InputMultiPath(File(exists=True), mandatory=True, desc='the object to be saved') source_file = File(exists=False, mandatory=True, desc='the original file') prefix = traits.Str(mandatory=False, desc='prefix for output files') space = traits.Str('', usedefault=True, desc='Label for space field') desc = traits.Str('', usedefault=True, desc='Label for description field') suffix = traits.Str('', usedefault=True, desc='suffix appended to source_file') keep_dtype = traits.Bool(False, usedefault=True, desc='keep datatype suffix') extra_values = traits.List(traits.Str) compress = traits.Bool(desc="force compression (True) or uncompression (False)" " of the output file (default: same as input)") extension = traits.Str()
class input_spec(TraitedSpec): subject = traits.Str() session = traits.Str() run = traits.Str() data_dir = traits.Directory(exists=True) info = traits.Dict() seg_file = traits.File(exists=True) surf_file = traits.File(exists=True) ts_file = traits.File(exists=True) mask_file = traits.File(exists=True) edge_file = traits.File(exists=True) noise_file = traits.File(exists=True) mc_file = traits.File(exists=True) wm_erode = traits.Int(default=2) csf_erode = traits.Int(default=1)
class input_spec(TraitedSpec): subject = traits.Str() session = traits.Str() run = traits.Str() data_dir = traits.Directory(exists=True) exp_info = traits.Dict() model_info = traits.Dict() seg_file = traits.File(exists=True) surf_file = traits.File(exists=True) ts_file = traits.File(exists=True) mask_file = traits.File(exists=True) noise_file = traits.File(exists=True) mc_file = traits.File(exists=True) mesh_files = traits.Tuple(traits.File(exists=True), traits.File(exists=True))
class FOOOFNodeInputSpec(BaseInterfaceInputSpec): """Input interface for FOOOF.""" # Input/Output input_dir = traits.Directory( argstr='%s', exists=True, resolve=True, desc= 'Input directory containing timeseries and/or spectra .npy files to read.', mandatory=True, position=0) output_dir = traits.Directory( argstr='%s', exists=False, resolve=True, desc='Output directory to write results and BIDS derivatives to write.', mandatory=True, position=1) # Init params peak_width_limits = traits.Tuple((0.5, 12.0), mandatory=False, usedefault=True) max_n_peaks = traits.Int(100, mandatory=False, usedefault=True) min_peak_height = traits.Float(0.0, mandatory=False, usedefault=True) peak_threshold = traits.Float(2.0, mandatory=False, usedefault=True) aperiodic_mode = traits.Str('fixed', mandatory=False, usedefault=True) # Fit params freqs = traits.File(mandatory=True, usedefault=False) power_spectrum = traits.File(mandatory=True, usedefault=False) f_range_fooof = traits.Tuple((-np.inf, np.inf), mandatory=False, usedefault=True) n_jobs = traits.Int(1, mandatory=False, usedefault=True)
class DerivativesDataSinkInputSpec(BaseInterfaceInputSpec): base_directory = traits.Directory( desc='Path to the base directory for storing data.') in_file = InputMultiPath(File(exists=True), mandatory=True, desc='the object to be saved') source_file = File(exists=False, mandatory=True, desc='the input func file') suffix = traits.Str('', mandatory=True, desc='suffix appended to source_file') extra_values = traits.List(traits.Str) compress = traits.Bool( desc="force compression (True) or uncompression (False)" " of the output file (default: same as input)")
class TrainInputSpec(BaseInterfaceInputSpec): images = traits.Array(mandatory=True, desc='Images for the training as NumPy array') masks = traits.Array(mandatory=True, desc='Masks for training as NumPy array') model_path = traits.Directory(mandatory=True, desc='directory where to save the models') ensemble_parameter = traits.Int(3, usedefault=True, desc='ensemble parameter') verbose = traits.Bool(True, usedefault=True, desc='Verbose') batch_size = traits.Int(30, usedefault=True, desc='batch size, default 30') epochs = traits.Int(5, usedefault=True, desc='epochs, default 5') image_shape = traits.Tuple((traits.Int(), traits.Int(), traits.Int()), desc='slice shape') shuffle = traits.Bool(True, desc='shuffle')
class QsiprepAnatomicalIngressInputSpec(BaseInterfaceInputSpec): recon_input_dir = traits.Directory(exists=True, mandatory=True) subject_id = traits.Str() subjects_dir = File(exists=True)
class _BIDSFreeSurferDirOutputSpec(TraitedSpec): subjects_dir = traits.Directory(exists=True, desc="FreeSurfer subjects directory")
class InverseSolutionConnInputSpec(BaseInterfaceInputSpec): """Input specification for InverseSolution.""" sbj_id = traits.String(desc='subject id', mandatory=True) subjects_dir = traits.Directory( exists=True, desc='Freesurfer main directory', # noqa mandatory=True) raw_filename = traits.File(exists=True, desc='raw filename', mandatory=True) cov_filename = traits.File(exists=True, desc='Noise Covariance matrix', mandatory=True) fwd_filename = traits.File(exists=True, desc='LF matrix', mandatory=True) is_epoched = traits.Bool(False, usedefault=True, desc='if true raw data will be epoched', mandatory=False) is_fixed = traits.Bool(False, usedefault=True, desc='if true we use fixed orientation', mandatory=False) events_id = traits.Dict({}, desc='the id of all events to consider.', usedefault=True, mandatory=False) condition = traits.List(desc='list of conditions', mandatory=False) t_min = traits.Float(None, desc='start time before event', mandatory=False) t_max = traits.Float(None, desc='end time after event', mandatory=False) is_evoked = traits.Bool(desc='if true if we want to create evoked data', mandatory=False) is_ave = traits.Bool(False, desc='if true if we have already evoked data', mandatory=False) inv_method = traits.String('MNE', desc='possible inverse methods are \ sLORETA, MNE, dSPM', usedefault=True, mandatory=True) snr = traits.Float(1.0, usedefault=True, desc='use smaller SNR for \ raw data', mandatory=False) parc = traits.String('aparc', usedefault=True, desc='the parcellation to use: aparc vs aparc.a2009s', mandatory=False) aseg = traits.Bool(desc='if true sub structures will be considered', mandatory=False) aseg_labels = traits.List(desc='list of substructures in the src space', mandatory=False) all_src_space = traits.Bool(False, desc='if true compute inverse on all \ source space', usedefault=True, mandatory=False) ROIs_mean = traits.Bool(True, desc='if true compute mean on ROIs', usedefault=True, mandatory=False)
class input_spec(TraitedSpec): proc_dir = traits.Directory(exists=True) subject = traits.Str() experiment = traits.Str() model = traits.Str()
class input_spec(TraitedSpec): session = traits.Tuple() data_dir = traits.Directory(exists=True) proc_dir = traits.Directory(exists=True) fm_template = traits.Str() phase_encoding = traits.Either("ap", "pa")
class input_spec(TraitedSpec): subject_id = traits.Str() data_dir = traits.Directory(exists=True) in_file = traits.File(exists=True) cost_file = traits.File(exists=True)
class output_spec(TraitedSpec): output_path = traits.Directory()