def _run_interface_pbr(self, runtime): #insert workflow here: import nipype.interfaces.fsl as fsl import nipype.pipeline.engine as pe import nipype.interfaces.freesurfer as fs import nipype.interfaces.io as nio bet = pe.MapNode(interface=fsl.BET(), name = 'bet', iterfield=['frac']) bet.inputs.in_file = #define in_file right here bet.inputs.frac = [0.7, 0.5, 0.3] fast = pe.MapNode(interface=fsl.FAST(), name='fast', iterfield=['in_files']) ss = pe.MapNode(interface=fs.SegStats(), name='ss', iterfield=['segmentation_file']) ds = pe.Node(interface=nio.DataSink(), name="ds", iterfield=['in_files']) ds.inputs.base_directory = #define the output here workflow = pe.Workflow(name='ute_flow') workflow.base_dir = '.' workflow.connect([(bet, fast, [('out_file', 'in_files')]), (fast, ss,[('mixeltype', 'segmentation_file')]), (ss, ds, [('avgwf_file', 'in_files')])]) workflow.run() """print(self.inputs)""" #this was used for checking if the workflow was being triggered and run #vi inserted into ucsf server side ute.py return runtime
cost='corratio', interp='trilinear', dof=6), name='Func_2_Anat') # invert transformation invt = Node(fsl.ConvertXFM(invert_xfm=True), name='invert_transf') # transform roimask to functional space using FLIRT (using Nearest Neighbor Interpolation for roimask) roimask2func = Node(fsl.FLIRT(padding_size=0, interp='nearestneighbour', apply_xfm=True), name='roimask_2_func') # Export average region time-series ss = Node(freesurfer.SegStats(), name='SegStats') # ### Preprocess the data before computing the FC def segstat_shaping(aparc_stats): import os, re # Remove all comment lines from the files (important for later MATLAB/OCTAVE import!) clearedFileName = os.path.dirname(aparc_stats) + '/aparc_stats_tmp.txt' with open(clearedFileName, 'w') as out_file: with open(aparc_stats, 'r') as in_file: for line in in_file: if line.startswith('#'): line = ''
def create_get_stats_flow(name='getstats', withreg=False): """Retrieves stats from labels Parameters ---------- name : string name of workflow withreg : boolean indicates whether to register source to label Example ------- Inputs:: inputspec.source_file : reference image for mask generation inputspec.label_file : label file from which to get ROIs (optionally with registration) inputspec.reg_file : bbreg file (assumes reg from source to label inputspec.inverse : boolean whether to invert the registration inputspec.subjects_dir : freesurfer subjects directory Outputs:: outputspec.stats_file : stats file """ import nipype.pipeline.engine as pe import nipype.interfaces.freesurfer as fs import nipype.interfaces.utility as niu """ Initialize the workflow """ getstats = pe.Workflow(name=name) """ Define the inputs to the workflow. """ if withreg: inputnode = pe.Node(niu.IdentityInterface(fields=['source_file', 'label_file', 'reg_file', 'subjects_dir','inverse']), name='inputspec') else: inputnode = pe.Node(niu.IdentityInterface(fields=['source_file', 'label_file']), name='inputspec') statnode = pe.MapNode(fs.SegStats(), iterfield=['segmentation_file','in_file'], name='segstats') """ Convert between source and label spaces if registration info is provided """ if withreg: voltransform = pe.MapNode(fs.ApplyVolTransform(inverse=True, interp='nearest'), iterfield=['source_file', 'reg_file'], name='transform') getstats.connect(inputnode, 'reg_file', voltransform, 'reg_file') getstats.connect(inputnode, 'source_file', voltransform, 'source_file') getstats.connect(inputnode, 'label_file', voltransform, 'target_file') getstats.connect(inputnode, 'subjects_dir', voltransform, 'subjects_dir') def switch_labels(inverse, transform_output, source_file, label_file): if inverse: return transform_output, source_file else: return label_file, transform_output chooser = pe.MapNode(niu.Function(input_names = ['inverse', 'transform_output', 'source_file', 'label_file'], output_names = ['label_file', 'source_file'], function=switch_labels), iterfield=['transform_output','source_file'], name='chooser') getstats.connect(inputnode,'source_file', chooser, 'source_file') getstats.connect(inputnode,'label_file', chooser, 'label_file') getstats.connect(inputnode,'inverse', chooser, 'inverse') getstats.connect(voltransform, 'transformed_file', chooser, 'transform_output') getstats.connect(chooser, 'label_file', statnode, 'segmentation_file') getstats.connect(chooser, 'source_file', statnode, 'in_file') else: getstats.connect(inputnode, 'label_file', statnode, 'segmentation_file') getstats.connect(inputnode, 'source_file', statnode, 'in_file') """ Setup an outputnode that defines relevant inputs of the workflow. """ outputnode = pe.Node(niu.IdentityInterface(fields=["stats_file" ]), name="outputspec") getstats.connect([ (statnode, outputnode, [("summary_file", "stats_file")]), ]) return getstats
def create_workflow(files, target_file, subject_id, TR, slice_times, norm_threshold=1, num_components=5, vol_fwhm=None, surf_fwhm=None, lowpass_freq=-1, highpass_freq=-1, subjects_dir=None, sink_directory=os.getcwd(), target_subject=['fsaverage3', 'fsaverage4'], name='resting'): wf = Workflow(name=name) # Rename files in case they are named identically name_unique = MapNode(Rename(format_string='rest_%(run)02d'), iterfield=['in_file', 'run'], name='rename') name_unique.inputs.keep_ext = True name_unique.inputs.run = list(range(1, len(files) + 1)) name_unique.inputs.in_file = files realign = Node(interface=spm.Realign(), name="realign") realign.inputs.jobtype = 'estwrite' num_slices = len(slice_times) slice_timing = Node(interface=spm.SliceTiming(), name="slice_timing") slice_timing.inputs.num_slices = num_slices slice_timing.inputs.time_repetition = TR slice_timing.inputs.time_acquisition = TR - TR / float(num_slices) slice_timing.inputs.slice_order = (np.argsort(slice_times) + 1).tolist() slice_timing.inputs.ref_slice = int(num_slices / 2) # Comute TSNR on realigned data regressing polynomials upto order 2 tsnr = MapNode(TSNR(regress_poly=2), iterfield=['in_file'], name='tsnr') wf.connect(slice_timing, 'timecorrected_files', tsnr, 'in_file') # Compute the median image across runs calc_median = Node(Function(input_names=['in_files'], output_names=['median_file'], function=median, imports=imports), name='median') wf.connect(tsnr, 'detrended_file', calc_median, 'in_files') """Segment and Register """ registration = create_reg_workflow(name='registration') wf.connect(calc_median, 'median_file', registration, 'inputspec.mean_image') registration.inputs.inputspec.subject_id = subject_id registration.inputs.inputspec.subjects_dir = subjects_dir registration.inputs.inputspec.target_image = target_file """Use :class:`nipype.algorithms.rapidart` to determine which of the images in the functional series are outliers based on deviations in intensity or movement. """ art = Node(interface=ArtifactDetect(), name="art") art.inputs.use_differences = [True, True] art.inputs.use_norm = True art.inputs.norm_threshold = norm_threshold art.inputs.zintensity_threshold = 9 art.inputs.mask_type = 'spm_global' art.inputs.parameter_source = 'SPM' """Here we are connecting all the nodes together. Notice that we add the merge node only if you choose to use 4D. Also `get_vox_dims` function is passed along the input volume of normalise to set the optimal voxel sizes. """ wf.connect([ (name_unique, realign, [('out_file', 'in_files')]), (realign, slice_timing, [('realigned_files', 'in_files')]), (slice_timing, art, [('timecorrected_files', 'realigned_files')]), (realign, art, [('realignment_parameters', 'realignment_parameters')]), ]) def selectindex(files, idx): import numpy as np from nipype.utils.filemanip import filename_to_list, list_to_filename return list_to_filename( np.array(filename_to_list(files))[idx].tolist()) mask = Node(fsl.BET(), name='getmask') mask.inputs.mask = True wf.connect(calc_median, 'median_file', mask, 'in_file') # get segmentation in normalized functional space def merge_files(in1, in2): out_files = filename_to_list(in1) out_files.extend(filename_to_list(in2)) return out_files # filter some noise # Compute motion regressors motreg = Node(Function( input_names=['motion_params', 'order', 'derivatives'], output_names=['out_files'], function=motion_regressors, imports=imports), name='getmotionregress') wf.connect(realign, 'realignment_parameters', motreg, 'motion_params') # Create a filter to remove motion and art confounds createfilter1 = Node(Function( input_names=['motion_params', 'comp_norm', 'outliers', 'detrend_poly'], output_names=['out_files'], function=build_filter1, imports=imports), name='makemotionbasedfilter') createfilter1.inputs.detrend_poly = 2 wf.connect(motreg, 'out_files', createfilter1, 'motion_params') wf.connect(art, 'norm_files', createfilter1, 'comp_norm') wf.connect(art, 'outlier_files', createfilter1, 'outliers') filter1 = MapNode(fsl.GLM(out_f_name='F_mcart.nii', out_pf_name='pF_mcart.nii', demean=True), iterfield=['in_file', 'design', 'out_res_name'], name='filtermotion') wf.connect(slice_timing, 'timecorrected_files', filter1, 'in_file') wf.connect(slice_timing, ('timecorrected_files', rename, '_filtermotart'), filter1, 'out_res_name') wf.connect(createfilter1, 'out_files', filter1, 'design') createfilter2 = MapNode(Function(input_names=[ 'realigned_file', 'mask_file', 'num_components', 'extra_regressors' ], output_names=['out_files'], function=extract_noise_components, imports=imports), iterfield=['realigned_file', 'extra_regressors'], name='makecompcorrfilter') createfilter2.inputs.num_components = num_components wf.connect(createfilter1, 'out_files', createfilter2, 'extra_regressors') wf.connect(filter1, 'out_res', createfilter2, 'realigned_file') wf.connect(registration, ('outputspec.segmentation_files', selectindex, [0, 2]), createfilter2, 'mask_file') filter2 = MapNode(fsl.GLM(out_f_name='F.nii', out_pf_name='pF.nii', demean=True), iterfield=['in_file', 'design', 'out_res_name'], name='filter_noise_nosmooth') wf.connect(filter1, 'out_res', filter2, 'in_file') wf.connect(filter1, ('out_res', rename, '_cleaned'), filter2, 'out_res_name') wf.connect(createfilter2, 'out_files', filter2, 'design') wf.connect(mask, 'mask_file', filter2, 'mask') bandpass = Node(Function( input_names=['files', 'lowpass_freq', 'highpass_freq', 'fs'], output_names=['out_files'], function=bandpass_filter, imports=imports), name='bandpass_unsmooth') bandpass.inputs.fs = 1. / TR bandpass.inputs.highpass_freq = highpass_freq bandpass.inputs.lowpass_freq = lowpass_freq wf.connect(filter2, 'out_res', bandpass, 'files') """Smooth the functional data using :class:`nipype.interfaces.spm.Smooth`. """ smooth = Node(interface=spm.Smooth(), name="smooth") smooth.inputs.fwhm = vol_fwhm wf.connect(bandpass, 'out_files', smooth, 'in_files') collector = Node(Merge(2), name='collect_streams') wf.connect(smooth, 'smoothed_files', collector, 'in1') wf.connect(bandpass, 'out_files', collector, 'in2') """ Transform the remaining images. First to anatomical and then to target """ warpall = MapNode(ants.ApplyTransforms(), iterfield=['input_image'], name='warpall') warpall.inputs.input_image_type = 3 warpall.inputs.interpolation = 'Linear' warpall.inputs.invert_transform_flags = [False, False] warpall.inputs.terminal_output = 'file' warpall.inputs.reference_image = target_file warpall.inputs.args = '--float' warpall.inputs.num_threads = 1 # transform to target wf.connect(collector, 'out', warpall, 'input_image') wf.connect(registration, 'outputspec.transforms', warpall, 'transforms') mask_target = Node(fsl.ImageMaths(op_string='-bin'), name='target_mask') wf.connect(registration, 'outputspec.anat2target', mask_target, 'in_file') maskts = MapNode(fsl.ApplyMask(), iterfield=['in_file'], name='ts_masker') wf.connect(warpall, 'output_image', maskts, 'in_file') wf.connect(mask_target, 'out_file', maskts, 'mask_file') # map to surface # extract aparc+aseg ROIs # extract subcortical ROIs # extract target space ROIs # combine subcortical and cortical rois into a single cifti file ####### # Convert aparc to subject functional space # Sample the average time series in aparc ROIs sampleaparc = MapNode( freesurfer.SegStats(default_color_table=True), iterfield=['in_file', 'summary_file', 'avgwf_txt_file'], name='aparc_ts') sampleaparc.inputs.segment_id = ([8] + list(range(10, 14)) + [17, 18, 26, 47] + list(range(49, 55)) + [58] + list(range(1001, 1036)) + list(range(2001, 2036))) wf.connect(registration, 'outputspec.aparc', sampleaparc, 'segmentation_file') wf.connect(collector, 'out', sampleaparc, 'in_file') def get_names(files, suffix): """Generate appropriate names for output files """ from nipype.utils.filemanip import (split_filename, filename_to_list, list_to_filename) out_names = [] for filename in files: _, name, _ = split_filename(filename) out_names.append(name + suffix) return list_to_filename(out_names) wf.connect(collector, ('out', get_names, '_avgwf.txt'), sampleaparc, 'avgwf_txt_file') wf.connect(collector, ('out', get_names, '_summary.stats'), sampleaparc, 'summary_file') # Sample the time series onto the surface of the target surface. Performs # sampling into left and right hemisphere target = Node(IdentityInterface(fields=['target_subject']), name='target') target.iterables = ('target_subject', filename_to_list(target_subject)) samplerlh = MapNode(freesurfer.SampleToSurface(), iterfield=['source_file'], name='sampler_lh') samplerlh.inputs.sampling_method = "average" samplerlh.inputs.sampling_range = (0.1, 0.9, 0.1) samplerlh.inputs.sampling_units = "frac" samplerlh.inputs.interp_method = "trilinear" samplerlh.inputs.smooth_surf = surf_fwhm # samplerlh.inputs.cortex_mask = True samplerlh.inputs.out_type = 'niigz' samplerlh.inputs.subjects_dir = subjects_dir samplerrh = samplerlh.clone('sampler_rh') samplerlh.inputs.hemi = 'lh' wf.connect(collector, 'out', samplerlh, 'source_file') wf.connect(registration, 'outputspec.out_reg_file', samplerlh, 'reg_file') wf.connect(target, 'target_subject', samplerlh, 'target_subject') samplerrh.set_input('hemi', 'rh') wf.connect(collector, 'out', samplerrh, 'source_file') wf.connect(registration, 'outputspec.out_reg_file', samplerrh, 'reg_file') wf.connect(target, 'target_subject', samplerrh, 'target_subject') # Combine left and right hemisphere to text file combiner = MapNode(Function(input_names=['left', 'right'], output_names=['out_file'], function=combine_hemi, imports=imports), iterfield=['left', 'right'], name="combiner") wf.connect(samplerlh, 'out_file', combiner, 'left') wf.connect(samplerrh, 'out_file', combiner, 'right') # Sample the time series file for each subcortical roi ts2txt = MapNode(Function( input_names=['timeseries_file', 'label_file', 'indices'], output_names=['out_file'], function=extract_subrois, imports=imports), iterfield=['timeseries_file'], name='getsubcortts') ts2txt.inputs.indices = [8] + list(range(10, 14)) + [17, 18, 26, 47] +\ list(range(49, 55)) + [58] ts2txt.inputs.label_file = \ os.path.abspath(('OASIS-TRT-20_jointfusion_DKT31_CMA_labels_in_MNI152_' '2mm_v2.nii.gz')) wf.connect(maskts, 'out_file', ts2txt, 'timeseries_file') ###### substitutions = [('_target_subject_', ''), ('_filtermotart_cleaned_bp_trans_masked', ''), ('_filtermotart_cleaned_bp', '')] regex_subs = [ ('_ts_masker.*/sar', '/smooth/'), ('_ts_masker.*/ar', '/unsmooth/'), ('_combiner.*/sar', '/smooth/'), ('_combiner.*/ar', '/unsmooth/'), ('_aparc_ts.*/sar', '/smooth/'), ('_aparc_ts.*/ar', '/unsmooth/'), ('_getsubcortts.*/sar', '/smooth/'), ('_getsubcortts.*/ar', '/unsmooth/'), ('series/sar', 'series/smooth/'), ('series/ar', 'series/unsmooth/'), ('_inverse_transform./', ''), ] # Save the relevant data into an output directory datasink = Node(interface=DataSink(), name="datasink") datasink.inputs.base_directory = sink_directory datasink.inputs.container = subject_id datasink.inputs.substitutions = substitutions datasink.inputs.regexp_substitutions = regex_subs # (r'(/_.*(\d+/))', r'/run\2') wf.connect(realign, 'realignment_parameters', datasink, 'resting.qa.motion') wf.connect(art, 'norm_files', datasink, 'resting.qa.art.@norm') wf.connect(art, 'intensity_files', datasink, 'resting.qa.art.@intensity') wf.connect(art, 'outlier_files', datasink, 'resting.qa.art.@outlier_files') wf.connect(registration, 'outputspec.segmentation_files', datasink, 'resting.mask_files') wf.connect(registration, 'outputspec.anat2target', datasink, 'resting.qa.ants') wf.connect(mask, 'mask_file', datasink, 'resting.mask_files.@brainmask') wf.connect(mask_target, 'out_file', datasink, 'resting.mask_files.target') wf.connect(filter1, 'out_f', datasink, 'resting.qa.compmaps.@mc_F') wf.connect(filter1, 'out_pf', datasink, 'resting.qa.compmaps.@mc_pF') wf.connect(filter2, 'out_f', datasink, 'resting.qa.compmaps') wf.connect(filter2, 'out_pf', datasink, 'resting.qa.compmaps.@p') wf.connect(bandpass, 'out_files', datasink, 'resting.timeseries.@bandpassed') wf.connect(smooth, 'smoothed_files', datasink, 'resting.timeseries.@smoothed') wf.connect(createfilter1, 'out_files', datasink, 'resting.regress.@regressors') wf.connect(createfilter2, 'out_files', datasink, 'resting.regress.@compcorr') wf.connect(maskts, 'out_file', datasink, 'resting.timeseries.target') wf.connect(sampleaparc, 'summary_file', datasink, 'resting.parcellations.aparc') wf.connect(sampleaparc, 'avgwf_txt_file', datasink, 'resting.parcellations.aparc.@avgwf') wf.connect(ts2txt, 'out_file', datasink, 'resting.parcellations.grayo.@subcortical') datasink2 = Node(interface=DataSink(), name="datasink2") datasink2.inputs.base_directory = sink_directory datasink2.inputs.container = subject_id datasink2.inputs.substitutions = substitutions datasink2.inputs.regexp_substitutions = regex_subs # (r'(/_.*(\d+/))', r'/run\2') wf.connect(combiner, 'out_file', datasink2, 'resting.parcellations.grayo.@surface') return wf
def analyze_openfmri_dataset(data_dir, subject=None, model_id=None, task_id=None, output_dir=None, subj_prefix='*', hpcutoff=120., use_derivatives=True, fwhm=6.0, subjects_dir=None, target=None): """Analyzes an open fmri dataset Parameters ---------- data_dir : str Path to the base data directory work_dir : str Nipype working directory (defaults to cwd) """ """ Load nipype workflows """ preproc = create_featreg_preproc(whichvol='first') modelfit = create_modelfit_workflow() fixed_fx = create_fixed_effects_flow() if subjects_dir: registration = create_fs_reg_workflow() else: registration = create_reg_workflow() """ Remove the plotting connection so that plot iterables don't propagate to the model stage """ preproc.disconnect(preproc.get_node('plot_motion'), 'out_file', preproc.get_node('outputspec'), 'motion_plots') """ Set up openfmri data specific components """ subjects = sorted([path.split(os.path.sep)[-1] for path in glob(os.path.join(data_dir, subj_prefix))]) infosource = pe.Node(niu.IdentityInterface(fields=['subject_id', 'model_id', 'task_id']), name='infosource') if len(subject) == 0: infosource.iterables = [('subject_id', subjects), ('model_id', [model_id]), ('task_id', task_id)] else: infosource.iterables = [('subject_id', [subjects[subjects.index(subj)] for subj in subject]), ('model_id', [model_id]), ('task_id', task_id)] subjinfo = pe.Node(niu.Function(input_names=['subject_id', 'base_dir', 'task_id', 'model_id'], output_names=['run_id', 'conds', 'TR'], function=get_subjectinfo), name='subjectinfo') subjinfo.inputs.base_dir = data_dir """ Return data components as anat, bold and behav """ contrast_file = os.path.join(data_dir, 'models', 'model%03d' % model_id, 'task_contrasts.txt') has_contrast = os.path.exists(contrast_file) if has_contrast: datasource = pe.Node(nio.DataGrabber(infields=['subject_id', 'run_id', 'task_id', 'model_id'], outfields=['anat', 'bold', 'behav', 'contrasts']), name='datasource') else: datasource = pe.Node(nio.DataGrabber(infields=['subject_id', 'run_id', 'task_id', 'model_id'], outfields=['anat', 'bold', 'behav']), name='datasource') datasource.inputs.base_directory = data_dir datasource.inputs.template = '*' if has_contrast: datasource.inputs.field_template = {'anat': '%s/anatomy/T1_001.nii.gz', 'bold': '%s/BOLD/task%03d_r*/bold.nii.gz', 'behav': ('%s/model/model%03d/onsets/task%03d_' 'run%03d/cond*.txt'), 'contrasts': ('models/model%03d/' 'task_contrasts.txt')} datasource.inputs.template_args = {'anat': [['subject_id']], 'bold': [['subject_id', 'task_id']], 'behav': [['subject_id', 'model_id', 'task_id', 'run_id']], 'contrasts': [['model_id']]} else: datasource.inputs.field_template = {'anat': '%s/anatomy/T1_001.nii.gz', 'bold': '%s/BOLD/task%03d_r*/bold.nii.gz', 'behav': ('%s/model/model%03d/onsets/task%03d_' 'run%03d/cond*.txt')} datasource.inputs.template_args = {'anat': [['subject_id']], 'bold': [['subject_id', 'task_id']], 'behav': [['subject_id', 'model_id', 'task_id', 'run_id']]} datasource.inputs.sort_filelist = True """ Create meta workflow """ wf = pe.Workflow(name='openfmri') wf.connect(infosource, 'subject_id', subjinfo, 'subject_id') wf.connect(infosource, 'model_id', subjinfo, 'model_id') wf.connect(infosource, 'task_id', subjinfo, 'task_id') wf.connect(infosource, 'subject_id', datasource, 'subject_id') wf.connect(infosource, 'model_id', datasource, 'model_id') wf.connect(infosource, 'task_id', datasource, 'task_id') wf.connect(subjinfo, 'run_id', datasource, 'run_id') wf.connect([(datasource, preproc, [('bold', 'inputspec.func')]), ]) def get_highpass(TR, hpcutoff): return hpcutoff / (2 * TR) gethighpass = pe.Node(niu.Function(input_names=['TR', 'hpcutoff'], output_names=['highpass'], function=get_highpass), name='gethighpass') wf.connect(subjinfo, 'TR', gethighpass, 'TR') wf.connect(gethighpass, 'highpass', preproc, 'inputspec.highpass') """ Setup a basic set of contrasts, a t-test per condition """ def get_contrasts(contrast_file, task_id, conds): import numpy as np import os contrast_def = [] if os.path.exists(contrast_file): with open(contrast_file, 'rt') as fp: contrast_def.extend([np.array(row.split()) for row in fp.readlines() if row.strip()]) contrasts = [] for row in contrast_def: if row[0] != 'task%03d' % task_id: continue con = [row[1], 'T', ['cond%03d' % (i + 1) for i in range(len(conds))], row[2:].astype(float).tolist()] contrasts.append(con) # add auto contrasts for each column for i, cond in enumerate(conds): con = [cond, 'T', ['cond%03d' % (i + 1)], [1]] contrasts.append(con) return contrasts contrastgen = pe.Node(niu.Function(input_names=['contrast_file', 'task_id', 'conds'], output_names=['contrasts'], function=get_contrasts), name='contrastgen') art = pe.MapNode(interface=ra.ArtifactDetect(use_differences=[True, False], use_norm=True, norm_threshold=1, zintensity_threshold=3, parameter_source='FSL', mask_type='file'), iterfield=['realigned_files', 'realignment_parameters', 'mask_file'], name="art") modelspec = pe.Node(interface=model.SpecifyModel(), name="modelspec") modelspec.inputs.input_units = 'secs' def check_behav_list(behav, run_id, conds): from nipype.external import six import numpy as np num_conds = len(conds) if isinstance(behav, six.string_types): behav = [behav] behav_array = np.array(behav).flatten() num_elements = behav_array.shape[0] return behav_array.reshape(num_elements/num_conds, num_conds).tolist() reshape_behav = pe.Node(niu.Function(input_names=['behav', 'run_id', 'conds'], output_names=['behav'], function=check_behav_list), name='reshape_behav') wf.connect(subjinfo, 'TR', modelspec, 'time_repetition') wf.connect(datasource, 'behav', reshape_behav, 'behav') wf.connect(subjinfo, 'run_id', reshape_behav, 'run_id') wf.connect(subjinfo, 'conds', reshape_behav, 'conds') wf.connect(reshape_behav, 'behav', modelspec, 'event_files') wf.connect(subjinfo, 'TR', modelfit, 'inputspec.interscan_interval') wf.connect(subjinfo, 'conds', contrastgen, 'conds') if has_contrast: wf.connect(datasource, 'contrasts', contrastgen, 'contrast_file') else: contrastgen.inputs.contrast_file = '' wf.connect(infosource, 'task_id', contrastgen, 'task_id') wf.connect(contrastgen, 'contrasts', modelfit, 'inputspec.contrasts') wf.connect([(preproc, art, [('outputspec.motion_parameters', 'realignment_parameters'), ('outputspec.realigned_files', 'realigned_files'), ('outputspec.mask', 'mask_file')]), (preproc, modelspec, [('outputspec.highpassed_files', 'functional_runs'), ('outputspec.motion_parameters', 'realignment_parameters')]), (art, modelspec, [('outlier_files', 'outlier_files')]), (modelspec, modelfit, [('session_info', 'inputspec.session_info')]), (preproc, modelfit, [('outputspec.highpassed_files', 'inputspec.functional_data')]) ]) # Comute TSNR on realigned data regressing polynomials upto order 2 tsnr = MapNode(TSNR(regress_poly=2), iterfield=['in_file'], name='tsnr') wf.connect(preproc, "outputspec.realigned_files", tsnr, "in_file") # Compute the median image across runs calc_median = Node(Function(input_names=['in_files'], output_names=['median_file'], function=median, imports=imports), name='median') wf.connect(tsnr, 'detrended_file', calc_median, 'in_files') """ Reorder the copes so that now it combines across runs """ def sort_copes(copes, varcopes, contrasts): import numpy as np if not isinstance(copes, list): copes = [copes] varcopes = [varcopes] num_copes = len(contrasts) n_runs = len(copes) all_copes = np.array(copes).flatten() all_varcopes = np.array(varcopes).flatten() outcopes = all_copes.reshape(len(all_copes)/num_copes, num_copes).T.tolist() outvarcopes = all_varcopes.reshape(len(all_varcopes)/num_copes, num_copes).T.tolist() return outcopes, outvarcopes, n_runs cope_sorter = pe.Node(niu.Function(input_names=['copes', 'varcopes', 'contrasts'], output_names=['copes', 'varcopes', 'n_runs'], function=sort_copes), name='cope_sorter') pickfirst = lambda x: x[0] wf.connect(contrastgen, 'contrasts', cope_sorter, 'contrasts') wf.connect([(preproc, fixed_fx, [(('outputspec.mask', pickfirst), 'flameo.mask_file')]), (modelfit, cope_sorter, [('outputspec.copes', 'copes')]), (modelfit, cope_sorter, [('outputspec.varcopes', 'varcopes')]), (cope_sorter, fixed_fx, [('copes', 'inputspec.copes'), ('varcopes', 'inputspec.varcopes'), ('n_runs', 'l2model.num_copes')]), (modelfit, fixed_fx, [('outputspec.dof_file', 'inputspec.dof_files'), ]) ]) wf.connect(calc_median, 'median_file', registration, 'inputspec.mean_image') if subjects_dir: wf.connect(infosource, 'subject_id', registration, 'inputspec.subject_id') registration.inputs.inputspec.subjects_dir = subjects_dir registration.inputs.inputspec.target_image = fsl.Info.standard_image('MNI152_T1_2mm_brain.nii.gz') if target: registration.inputs.inputspec.target_image = target else: wf.connect(datasource, 'anat', registration, 'inputspec.anatomical_image') registration.inputs.inputspec.target_image = fsl.Info.standard_image('MNI152_T1_2mm.nii.gz') registration.inputs.inputspec.target_image_brain = fsl.Info.standard_image('MNI152_T1_2mm_brain.nii.gz') registration.inputs.inputspec.config_file = 'T1_2_MNI152_2mm' def merge_files(copes, varcopes, zstats): out_files = [] splits = [] out_files.extend(copes) splits.append(len(copes)) out_files.extend(varcopes) splits.append(len(varcopes)) out_files.extend(zstats) splits.append(len(zstats)) return out_files, splits mergefunc = pe.Node(niu.Function(input_names=['copes', 'varcopes', 'zstats'], output_names=['out_files', 'splits'], function=merge_files), name='merge_files') wf.connect([(fixed_fx.get_node('outputspec'), mergefunc, [('copes', 'copes'), ('varcopes', 'varcopes'), ('zstats', 'zstats'), ])]) wf.connect(mergefunc, 'out_files', registration, 'inputspec.source_files') def split_files(in_files, splits): copes = in_files[:splits[0]] varcopes = in_files[splits[0]:(splits[0] + splits[1])] zstats = in_files[(splits[0] + splits[1]):] return copes, varcopes, zstats splitfunc = pe.Node(niu.Function(input_names=['in_files', 'splits'], output_names=['copes', 'varcopes', 'zstats'], function=split_files), name='split_files') wf.connect(mergefunc, 'splits', splitfunc, 'splits') wf.connect(registration, 'outputspec.transformed_files', splitfunc, 'in_files') if subjects_dir: get_roi_mean = pe.MapNode(fs.SegStats(default_color_table=True), iterfield=['in_file'], name='get_aparc_means') get_roi_mean.inputs.avgwf_txt_file = True wf.connect(fixed_fx.get_node('outputspec'), 'copes', get_roi_mean, 'in_file') wf.connect(registration, 'outputspec.aparc', get_roi_mean, 'segmentation_file') get_roi_tsnr = pe.MapNode(fs.SegStats(default_color_table=True), iterfield=['in_file'], name='get_aparc_tsnr') get_roi_tsnr.inputs.avgwf_txt_file = True wf.connect(tsnr, 'tsnr_file', get_roi_tsnr, 'in_file') wf.connect(registration, 'outputspec.aparc', get_roi_tsnr, 'segmentation_file') """ Connect to a datasink """ def get_subs(subject_id, conds, run_id, model_id, task_id): subs = [('_subject_id_%s_' % subject_id, '')] subs.append(('_model_id_%d' % model_id, 'model%03d' %model_id)) subs.append(('task_id_%d/' % task_id, '/task%03d_' % task_id)) subs.append(('bold_dtype_mcf_mask_smooth_mask_gms_tempfilt_mean_warp', 'mean')) subs.append(('bold_dtype_mcf_mask_smooth_mask_gms_tempfilt_mean_flirt', 'affine')) for i in range(len(conds)): subs.append(('_flameo%d/cope1.' % i, 'cope%02d.' % (i + 1))) subs.append(('_flameo%d/varcope1.' % i, 'varcope%02d.' % (i + 1))) subs.append(('_flameo%d/zstat1.' % i, 'zstat%02d.' % (i + 1))) subs.append(('_flameo%d/tstat1.' % i, 'tstat%02d.' % (i + 1))) subs.append(('_flameo%d/res4d.' % i, 'res4d%02d.' % (i + 1))) subs.append(('_warpall%d/cope1_warp.' % i, 'cope%02d.' % (i + 1))) subs.append(('_warpall%d/varcope1_warp.' % (len(conds) + i), 'varcope%02d.' % (i + 1))) subs.append(('_warpall%d/zstat1_warp.' % (2 * len(conds) + i), 'zstat%02d.' % (i + 1))) subs.append(('_warpall%d/cope1_trans.' % i, 'cope%02d.' % (i + 1))) subs.append(('_warpall%d/varcope1_trans.' % (len(conds) + i), 'varcope%02d.' % (i + 1))) subs.append(('_warpall%d/zstat1_trans.' % (2 * len(conds) + i), 'zstat%02d.' % (i + 1))) subs.append(('__get_aparc_means%d/' % i, '/cope%02d_' % (i + 1))) for i, run_num in enumerate(run_id): subs.append(('__get_aparc_tsnr%d/' % i, '/run%02d_' % run_num)) subs.append(('__art%d/' % i, '/run%02d_' % run_num)) subs.append(('__dilatemask%d/' % i, '/run%02d_' % run_num)) subs.append(('__realign%d/' % i, '/run%02d_' % run_num)) subs.append(('__modelgen%d/' % i, '/run%02d_' % run_num)) subs.append(('/model%03d/task%03d/' % (model_id, task_id), '/')) subs.append(('/model%03d/task%03d_' % (model_id, task_id), '/')) subs.append(('_bold_dtype_mcf_bet_thresh_dil', '_mask')) subs.append(('_output_warped_image', '_anat2target')) subs.append(('median_flirt_brain_mask', 'median_brain_mask')) subs.append(('median_bbreg_brain_mask', 'median_brain_mask')) return subs subsgen = pe.Node(niu.Function(input_names=['subject_id', 'conds', 'run_id', 'model_id', 'task_id'], output_names=['substitutions'], function=get_subs), name='subsgen') wf.connect(subjinfo, 'run_id', subsgen, 'run_id') datasink = pe.Node(interface=nio.DataSink(), name="datasink") wf.connect(infosource, 'subject_id', datasink, 'container') wf.connect(infosource, 'subject_id', subsgen, 'subject_id') wf.connect(infosource, 'model_id', subsgen, 'model_id') wf.connect(infosource, 'task_id', subsgen, 'task_id') wf.connect(contrastgen, 'contrasts', subsgen, 'conds') wf.connect(subsgen, 'substitutions', datasink, 'substitutions') wf.connect([(fixed_fx.get_node('outputspec'), datasink, [('res4d', 'res4d'), ('copes', 'copes'), ('varcopes', 'varcopes'), ('zstats', 'zstats'), ('tstats', 'tstats')]) ]) wf.connect([(modelfit.get_node('modelgen'), datasink, [('design_cov', 'qa.model'), ('design_image', 'qa.model.@matrix_image'), ('design_file', 'qa.model.@matrix'), ])]) wf.connect([(preproc, datasink, [('outputspec.motion_parameters', 'qa.motion'), ('outputspec.motion_plots', 'qa.motion.plots'), ('outputspec.mask', 'qa.mask')])]) wf.connect(registration, 'outputspec.mean2anat_mask', datasink, 'qa.mask.mean2anat') wf.connect(art, 'norm_files', datasink, 'qa.art.@norm') wf.connect(art, 'intensity_files', datasink, 'qa.art.@intensity') wf.connect(art, 'outlier_files', datasink, 'qa.art.@outlier_files') wf.connect(registration, 'outputspec.anat2target', datasink, 'qa.anat2target') wf.connect(tsnr, 'tsnr_file', datasink, 'qa.tsnr.@map') if subjects_dir: wf.connect(registration, 'outputspec.min_cost_file', datasink, 'qa.mincost') wf.connect([(get_roi_tsnr, datasink, [('avgwf_txt_file', 'qa.tsnr'), ('summary_file', 'qa.tsnr.@summary')])]) wf.connect([(get_roi_mean, datasink, [('avgwf_txt_file', 'copes.roi'), ('summary_file', 'copes.roi.@summary')])]) wf.connect([(splitfunc, datasink, [('copes', 'copes.mni'), ('varcopes', 'varcopes.mni'), ('zstats', 'zstats.mni'), ])]) wf.connect(calc_median, 'median_file', datasink, 'mean') wf.connect(registration, 'outputspec.transformed_mean', datasink, 'mean.mni') wf.connect(registration, 'outputspec.func2anat_transform', datasink, 'xfm.mean2anat') wf.connect(registration, 'outputspec.anat2target_transform', datasink, 'xfm.anat2target') """ Set processing parameters """ preproc.inputs.inputspec.fwhm = fwhm gethighpass.inputs.hpcutoff = hpcutoff modelspec.inputs.high_pass_filter_cutoff = hpcutoff modelfit.inputs.inputspec.bases = {'dgamma': {'derivs': use_derivatives}} modelfit.inputs.inputspec.model_serial_correlations = True modelfit.inputs.inputspec.film_threshold = 1000 datasink.inputs.base_directory = output_dir return wf
import nipype.interfaces.fsl as fsl import nipype.pipeline.engine as pe import nipype.interfaces.freesurfer as fs import nipype.interfaces.io as nio bet = pe.MapNode(interface=fsl.BET(), name='bet', iterfield=['frac']) bet.inputs.in_file = '/data/henry1/uday/ms1297-mse4664-007-MPRAGE_iso_1.nii.gz' #use the absolute path instead of relative path here bet.inputs.frac = [0.7, 0.5, 0.3] #can now adjust to process through different fracs #fast = pe.Node(interface=fsl.FAST(), name='fast') fast = pe.MapNode(interface=fsl.FAST(), name='fast', iterfield=['in_files']) ss = pe.MapNode(interface=fs.SegStats(), name='ss', iterfield=['segmentation_file']) #iterate over a list of fast outputs as a mapnode, iterfield = in_files #setting up the DataSink for organizing outputs ds = pe.Node(interface=nio.DataSink(), name="ds", iterfield=['in_files']) ds.inputs.base_directory = '/data/henry1/uday/ds_output' #this is broken -- need to find a way to use DataSink as MapNode #fixed, use base_directory rather than base.directory #no object DataSink within this -- iterfield is broken too | use infields keyword arg workflow = pe.Workflow(name='MapNodeFlow') workflow.base_dir = '.' workflow.connect([(bet, fast, [('out_file', 'in_files')]), (fast, ss, [('mixeltype', 'segmentation_file')]), (ss, ds, [('avgwf_file', 'in_files')])]) #for FAST use mixeltypes instead of out_files
def create_confound_removal_workflow(workflow_name="confound_removal"): inputnode = pe.Node(util.IdentityInterface( fields=["subject_id", "timeseries", "reg_file", "motion_parameters"]), name="inputs") # Get the Freesurfer aseg volume from the Subjects Directory getaseg = pe.Node(io.FreeSurferSource(subjects_dir=fs.Info.subjectsdir()), name="getaseg") # Binarize the Aseg to use as a whole brain mask asegmask = pe.Node(fs.Binarize(min=0.5, dilate=2), name="asegmask") # Extract and erode a mask of the deep cerebral white matter extractwm = pe.Node(fs.Binarize(match=[2, 41], erode=3), name="extractwm") # Extract and erode a mask of the ventricles and CSF extractcsf = pe.Node(fs.Binarize(match=[4, 5, 14, 15, 24, 31, 43, 44, 63], erode=1), name="extractcsf") # Mean the timeseries across the fourth dimension meanfunc = pe.MapNode(fsl.MeanImage(), iterfield=["in_file"], name="meanfunc") # Invert the anatomical coregistration and resample the masks regwm = pe.MapNode(fs.ApplyVolTransform(inverse=True, interp="nearest"), iterfield=["source_file", "reg_file"], name="regwm") regcsf = pe.MapNode(fs.ApplyVolTransform(inverse=True, interp="nearest"), iterfield=["source_file", "reg_file"], name="regcsf") regbrain = pe.MapNode(fs.ApplyVolTransform(inverse=True, interp="nearest"), iterfield=["source_file", "reg_file"], name="regbrain") # Convert to Nifti for FSL tools convertwm = pe.MapNode(fs.MRIConvert(out_type="niigz"), iterfield=["in_file"], name="convertwm") convertcsf = pe.MapNode(fs.MRIConvert(out_type="niigz"), iterfield=["in_file"], name="convertcsf") convertbrain = pe.MapNode(fs.MRIConvert(out_type="niigz"), iterfield=["in_file"], name="convertbrain") # Add the mask images together for a report image addconfmasks = pe.MapNode(fsl.ImageMaths(suffix="conf", op_string="-mul 2 -add", out_data_type="char"), iterfield=["in_file", "in_file2"], name="addconfmasks") # Overlay and slice the confound mask overlaied on mean func for reporting confoverlay = pe.MapNode(fsl.Overlay(auto_thresh_bg=True, stat_thresh=(.7, 2)), iterfield=["background_image", "stat_image"], name="confoverlay") confslice = pe.MapNode(fsl.Slicer(image_width=800, label_slices=False), iterfield=["in_file"], name="confslice") confslice.inputs.sample_axial = 2 # Extract the mean signal from white matter and CSF masks wmtcourse = pe.MapNode(fs.SegStats(exclude_id=0, avgwf_txt_file=True), iterfield=["segmentation_file", "in_file"], name="wmtcourse") csftcourse = pe.MapNode(fs.SegStats(exclude_id=0, avgwf_txt_file=True), iterfield=["segmentation_file", "in_file"], name="csftcourse") # Extract the mean signal from over the whole brain globaltcourse = pe.MapNode(fs.SegStats(exclude_id=0, avgwf_txt_file=True), iterfield=["segmentation_file", "in_file"], name="globaltcourse") # Build the confound design matrix conf_inputs = [ "motion_params", "global_waveform", "wm_waveform", "csf_waveform" ] confmatrix = pe.MapNode(util.Function(input_names=conf_inputs, output_names=["confound_matrix"], function=make_confound_matrix), iterfield=conf_inputs, name="confmatrix") # Regress the confounds out of the timeseries confregress = pe.MapNode(fsl.FilterRegressor(filter_all=True), iterfield=["in_file", "design_file", "mask"], name="confregress") # Rename the confound mask png renamepng = pe.MapNode(util.Rename(format_string="confound_sources.png"), iterfield=["in_file"], name="renamepng") # Define the outputs outputnode = pe.Node( util.IdentityInterface(fields=["timeseries", "confound_sources"]), name="outputs") # Define and connect the confound workflow confound = pe.Workflow(name=workflow_name) confound.connect([ (inputnode, meanfunc, [("timeseries", "in_file")]), (inputnode, getaseg, [("subject_id", "subject_id")]), (getaseg, extractwm, [("aseg", "in_file")]), (getaseg, extractcsf, [("aseg", "in_file")]), (getaseg, asegmask, [("aseg", "in_file")]), (extractwm, regwm, [("binary_file", "target_file")]), (extractcsf, regcsf, [("binary_file", "target_file")]), (asegmask, regbrain, [("binary_file", "target_file")]), (meanfunc, regwm, [("out_file", "source_file")]), (meanfunc, regcsf, [("out_file", "source_file")]), (meanfunc, regbrain, [("out_file", "source_file")]), (inputnode, regwm, [("reg_file", "reg_file")]), (inputnode, regcsf, [("reg_file", "reg_file")]), (inputnode, regbrain, [("reg_file", "reg_file")]), (regwm, convertwm, [("transformed_file", "in_file")]), (regcsf, convertcsf, [("transformed_file", "in_file")]), (regbrain, convertbrain, [("transformed_file", "in_file")]), (convertwm, addconfmasks, [("out_file", "in_file")]), (convertcsf, addconfmasks, [("out_file", "in_file2")]), (addconfmasks, confoverlay, [("out_file", "stat_image")]), (meanfunc, confoverlay, [("out_file", "background_image")]), (confoverlay, confslice, [("out_file", "in_file")]), (confslice, renamepng, [("out_file", "in_file")]), (regwm, wmtcourse, [("transformed_file", "segmentation_file")]), (inputnode, wmtcourse, [("timeseries", "in_file")]), (regcsf, csftcourse, [("transformed_file", "segmentation_file")]), (inputnode, csftcourse, [("timeseries", "in_file")]), (regbrain, globaltcourse, [("transformed_file", "segmentation_file")]), (inputnode, globaltcourse, [("timeseries", "in_file")]), (inputnode, confmatrix, [("motion_parameters", "motion_params")]), (wmtcourse, confmatrix, [("avgwf_txt_file", "wm_waveform")]), (csftcourse, confmatrix, [("avgwf_txt_file", "csf_waveform")]), (globaltcourse, confmatrix, [("avgwf_txt_file", "global_waveform")]), (confmatrix, confregress, [("confound_matrix", "design_file")]), (inputnode, confregress, [("timeseries", "in_file")]), (convertbrain, confregress, [("out_file", "mask")]), (confregress, outputnode, [("out_file", "timeseries")]), (renamepng, outputnode, [("out_file", "confound_sources")]), ]) return confound
def test_segstats(): input_map = dict( annot=dict( mandatory=True, argstr='--annot %s %s %s', xor=('segmentation_file', 'annot', 'surf_label'), ), args=dict(argstr='%s', ), avgwf_file=dict(argstr='--avgwfvol %s', ), avgwf_txt_file=dict(argstr='--avgwf %s', ), brain_vol=dict(), calc_power=dict(argstr='--%s', ), calc_snr=dict(argstr='--snr', ), color_table_file=dict( xor=('color_table_file', 'default_color_table', 'gca_color_table'), argstr='--ctab %s', ), cortex_vol_from_surf=dict(argstr='--surf-ctx-vol', ), default_color_table=dict( xor=('color_table_file', 'default_color_table', 'gca_color_table'), argstr='--ctab-default', ), environ=dict(), etiv=dict(argstr='--etiv', ), etiv_only=dict(), exclude_ctx_gm_wm=dict(argstr='--excl-ctxgmwm', ), exclude_id=dict(argstr='--excludeid %d', ), frame=dict(argstr='--frame %d', ), gca_color_table=dict( xor=('color_table_file', 'default_color_table', 'gca_color_table'), argstr='--ctab-gca %s', ), in_file=dict(argstr='--i %s', ), mask_erode=dict(argstr='--maskerode %d', ), mask_file=dict(argstr='--mask %s', ), mask_frame=dict(requires=['mask_file'], ), mask_invert=dict(argstr='--maskinvert', ), mask_sign=dict(), mask_thresh=dict(argstr='--maskthresh %f', ), multiply=dict(argstr='--mul %f', ), non_empty_only=dict(argstr='--nonempty', ), partial_volume_file=dict(argstr='--pv %f', ), segment_id=dict(argstr='--id %s...', ), segmentation_file=dict( xor=('segmentation_file', 'annot', 'surf_label'), argstr='--seg %s', mandatory=True, ), sf_avg_file=dict(argstr='--sfavg %s', ), subjects_dir=dict(), summary_file=dict(argstr='--sum %s', ), surf_label=dict( mandatory=True, argstr='--slabel %s %s %s', xor=('segmentation_file', 'annot', 'surf_label'), ), vox=dict(argstr='--vox %s', ), wm_vol_from_surf=dict(argstr='--surf-wm-vol', ), ) instance = freesurfer.SegStats() for key, metadata in input_map.items(): for metakey, value in metadata.items(): yield assert_equal, getattr(instance.inputs.traits()[key], metakey), value
fssource = pe.Node(interface=nio.FreeSurferSource(), name='fssource') fssource.inputs.subjects_dir = subjects_dir #Node: MRIConvert - to convert files from FreeSurfer format into nifti format MRIconversion = pe.Node(interface=fs.MRIConvert(), name='MRIconversion') MRIconversion.inputs.out_type = 'nii' #Node: ApplyVolTransform - to transform contrasts into anatomical space # creates 'con_*.anat.bb.mgh' files transformation = pe.Node(interface=fs.ApplyVolTransform(), name='transformation') transformation.inputs.fs_target = True transformation.inputs.interp = 'nearest' #Node: SegStatsorig - to extract specified regions of the original segmentation segmentationorig = pe.Node(interface=fs.SegStats(), name='segmentationorig') segmentationorig.inputs.segment_id = ROIregionsorig #Node: SegStats2009 - to extract specified regions of the 2009 segmentation segmentation2009 = pe.Node(interface=fs.SegStats(), name='segmentation2009') segmentation2009.inputs.segment_id = ROIregions2009 #Node: Datasink - Creates a datasink node to store important outputs datasink = pe.Node(interface=nio.DataSink(), name="datasink") datasink.inputs.base_directory = experiment_dir + '/results' datasink.inputs.container = aROIOutput """ Definition of anatomical ROI workflow """ #Initiation of the ROI extraction workflow
#Node: ImageMaths - to mask the spherical ROI with a subject specific T-map tmapmask = pe.Node(interface=fsl.ImageMaths(), name="tmapmask") tmapmask.inputs.out_data_type = 'float' #function to add the thresholded group T-map to op_string def groupTMapPath(contrast_id): experiment_dir = '~SOMEPATH/experiment' path2con = 'results/level2_output/l2vol_contrasts_thresh' op_string = '-mul %s/%s/_con_%d/spmT_0001_thr.hdr -bin' return op_string % (experiment_dir, path2con, contrast_id) #Node: SegStats - to extract the statistic from a given segmentation segstat = pe.Node(interface=fs.SegStats(), name='segstat') #Node: Datasink - Create a datasink node to store important outputs datasink = pe.Node(interface=nio.DataSink(), name="datasink") datasink.inputs.base_directory = experiment_dir + '/results' datasink.inputs.container = fROIOutput """ Definition of functional ROI workflow """ #Initiation of the fROI extraction workflow fROIflow = pe.Workflow(name='fROIflow') fROIflow.base_dir = experiment_dir + '/results/workingdir_fROI' #Connect up all components fROIflow.connect([