コード例 #1
0
def model_fitting(source_img, prepped_img, subject_info, task):
    taskdir = os.path.join(outputdir, task)
    if not os.path.exists(taskdir):
        os.mkdir(taskdir)

    # skull strip the preprocessed BOLD
    bet = fsl.BET()
    bet.inputs.in_file = prepped_img
    bet.inputs.frac = 0.7
    bet.inputs.functional = True
    bet.inputs.out_file = os.path.join(taskdir, task + "_input_functional_bet.nii.gz")
    bet_res = bet.run()
    bettedinput = bet_res.outputs.out_file

    task_vs_baseline = [task + " vs baseline", 'T', [task], [1]]  # set up contrasts
    contrasts = [task_vs_baseline]

    modelfit = pe.Workflow(name='modelfit', base_dir=taskdir)  # generate the model fitting workflow
    modelspec = pe.Node(interface=model.SpecifyModel(), name="modelspec")  # generate design info
    level1design = pe.Node(interface=fsl.Level1Design(), name="level1design")  # generate fsf file
    modelgen = pe.MapNode(  # generate .mat file
        interface=fsl.FEATModel(),
        name='modelgen',
        iterfield=['fsf_file', 'ev_files'])
    feat = pe.Node(  # feat statistics
        interface=fsl.FEAT(),
        name='feat',
        iterfield=['fsf_file'])

    # put it all together
    modelfit.connect([
        (modelspec, level1design, [('session_info', 'session_info')]),
        (level1design, modelgen, [('fsf_files', 'fsf_file'), ('ev_files', 'ev_files')]),
        (level1design, feat, [('fsf_files', 'fsf_file')])])

    # define inputs to workflow
    modelspec.inputs.input_units = 'secs'
    modelspec.inputs.functional_runs = bettedinput
    modelspec.inputs.time_repetition = source_img.entities['RepetitionTime']
    modelspec.inputs.high_pass_filter_cutoff = 90
    modelspec.inputs.subject_info = subject_info

    level1design.inputs.interscan_interval = source_img.entities['RepetitionTime']
    level1design.inputs.bases = {'gamma': {'gammasigma': 3, 'gammadelay': 6, 'derivs': True}}
    level1design.inputs.contrasts = contrasts
    level1design.inputs.model_serial_correlations = True

    # Run the model-fitting pipeline. Main outputs are a feat directory (w/ functional img) and a design.mat file
    res = modelfit.run()

    # outputs
    feat_dir = list(res.nodes)[3].result.outputs.feat_dir
    thresh_img = feat_dir + "/thresh_zstat1.nii.gz"

    return thresh_img
コード例 #2
0
                                       high_pass_filter_cutoff=100),
                 name="modelspec")

# first-level design
level1design = Node(fsl.Level1Design(bases={'dgamma':{'derivs': True}},
                                     interscan_interval=TR,
                                     model_serial_correlations=True,
                                     contrasts=contrast_list),
                    name="level1design")

# creating all the other files necessary to run the model
modelgen = Node(fsl.FEATModel(),
                name='modelgen')

# then running through FEAT
feat = Node(fsl.FEAT(),
            name="feat")

# creating datasink to collect outputs
datasink = Node(DataSink(base_directory=outDir),
                name='datasink')

## Use the following DataSink output substitutions
substitutions = [('_subject_id_', 'sub-'),
                 ('_subsession_id_', '/ses-')
                 ]

datasink.inputs.substitutions = substitutions

###########
#
コード例 #3
0
                                       high_pass_filter_cutoff=100),
                 name="modelspec")

# first-level design
level1design = Node(fsl.Level1Design(bases={'dgamma': {
    'derivs': True
}},
                                     interscan_interval=TR,
                                     model_serial_correlations=True),
                    name="level1design")

# creating all the other files necessary to run the model
modelgen = Node(fsl.FEATModel(), name='modelgen')

# then running through FEAT
feat = Node(fsl.FEAT(), name="feat")

# creating datasink to collect outputs
datasink = Node(DataSink(base_directory=outDir), name='datasink')

## Use the following DataSink output substitutions
substitutions = [('_subject_id_', '/sub-'), ('_run_id_', '/run-')]

datasink.inputs.substitutions = substitutions

###########
#
# SETTING UP THE WORKFLOW NODES
#
###########
コード例 #4
0
), name='l1_spec')

# l1_model creates a first-level model design
l1_model = pe.Node(fsl.Level1Design(
    bases={'dgamma': {'derivs': True}},
    model_serial_correlations=True,
    interscan_interval = tr,
    contrasts=contrasts
    # orthogonalization=orthogonality,
), name='l1_model')

# feat_spec generates an fsf model specification file
feat_spec = pe.Node(fsl.FEATModel(), name='feat_spec')

# feat_fit actually runs FEAT
feat_fit = pe.Node(fsl.FEAT(), name='feat_fit', mem_gb=5)

## instead of FEAT
#modelestimate = pe.MapNode(interface=fsl.FILMGLS(smooth_autocorr=True,
#                                                 mask_size=5,
#                                                 threshold=1000),
#                                                 name='modelestimate',
#                                                 iterfield = ['design_file',
#                                                              'in_file',
#                                                              'tcon_file'])
feat_select = pe.Node(nio.SelectFiles({
    'cope': 'stats/cope*.nii.gz',
    'pe': 'stats/pe[0-9][0-9].nii.gz',
    'tstat': 'stats/tstat*.nii.gz',
    'varcope': 'stats/varcope*.nii.gz',
    'zstat': 'stats/zstat*.nii.gz',
コード例 #5
0
ファイル: preproc.py プロジェクト: wmpauli/mb_pavlovian_mvpa
preproc.connect(inputnode, 'func', get_totalVoxels, 'in_file')

# get the number of volumes in a scan
get_nVols = pe.MapNode(interface=Function(input_names=['in_file'], output_names=['output'], function=Get_nVols), name='get_nVols', iterfield=['in_file'])
preproc.connect(inputnode, 'func', get_nVols, 'in_file')

# customize template melodic.fsf file for data of one participant
prepare_design_fsf = pe.MapNode(interface=Function(input_names=['feat_files','initial_highres_files','highres_files','npts','total_voxels'], output_names=['out_file'], function=Prepare_Design_FSF), name='prepare_design_fsf', iterfield=['feat_files','initial_highres_files', 'npts','total_voxels'])
preproc.connect(inputnode, 'func', prepare_design_fsf, 'feat_files')
preproc.connect(n4biasCorrMbRef, 'output_image', prepare_design_fsf, 'initial_highres_files')
preproc.connect(maskT2, 'out_file', prepare_design_fsf, 'highres_files')
preproc.connect(get_totalVoxels, 'output', prepare_design_fsf, 'total_voxels')
preproc.connect(get_nVols, 'output', prepare_design_fsf, 'npts')

# define the feat process for preprocessing the data
feat = pe.MapNode(interface=fsl.FEAT(), name='feat', iterfield=['fsf_file']) 
preproc.connect(prepare_design_fsf, 'out_file', feat, 'fsf_file')







# # ----------------- denoise ---------

# call the ica-fix feature extraction, mel_ica is the output directory of a melodic run
extract_features = pe.MapNode(interface=fix.FeatureExtractor(), name='extract_features', iterfield=['mel_ica'])
preproc.connect(feat, 'feat_dir', extract_features, 'mel_ica')

# assemble inputs for training the ica-fix classifier
コード例 #6
0
def first_level_wf(in_files, output_dir, fwhm=6.0, name='wf_1st_level'):
    workflow = pe.Workflow(name=name)
    datasource = pe.Node(niu.Function(function=_dict_ds,
                                      output_names=DATA_ITEMS),
                         name='datasource')
    datasource.inputs.in_dict = in_files
    datasource.iterables = ('sub', sorted(in_files.keys()))

    # Extract motion parameters from regressors file
    runinfo = pe.Node(niu.Function(input_names=[
        'in_file', 'events_file', 'regressors_file', 'regressors_names'
    ],
                                   function=_bids2nipypeinfo,
                                   output_names=['info', 'realign_file']),
                      name='runinfo')

    # Set the column names to be used from the confounds file
    runinfo.inputs.regressors_names = ['dvars', 'framewise_displacement'] + \
        ['a_comp_cor_%02d' % i for i in range(6)] + ['cosine%02d' % i for i in range(4)]

    # SUSAN smoothing
    susan = create_susan_smooth()
    susan.inputs.inputnode.fwhm = fwhm

    l1_spec = pe.Node(SpecifyModel(parameter_source='FSL',
                                   input_units='secs',
                                   high_pass_filter_cutoff=100),
                      name='l1_spec')

    # l1_model creates a first-level model design
    l1_model = pe.Node(
        fsl.Level1Design(
            bases={'dgamma': {
                'derivs': True
            }},
            model_serial_correlations=True,
            #ENTER YOUR OWN CONTRAST HERE
            contrasts=[],
            # orthogonalization=orthogonality,
        ),
        name='l1_model')

    # feat_spec generates an fsf model specification file
    feat_spec = pe.Node(fsl.FEATModel(), name='feat_spec')
    # feat_fit actually runs FEAT
    feat_fit = pe.Node(fsl.FEAT(), name='feat_fit', mem_gb=12)

    feat_select = pe.Node(nio.SelectFiles({
        'cope': 'stats/cope1.nii.gz',
        'pe': 'stats/pe[0-9][0-9].nii.gz',
        'tstat': 'stats/tstat1.nii.gz',
        'varcope': 'stats/varcope1.nii.gz',
        'zstat': 'stats/zstat1.nii.gz',
    }),
                          name='feat_select')

    ds_cope = pe.Node(DerivativesDataSink(base_directory=str(output_dir),
                                          keep_dtype=False,
                                          suffix='cope',
                                          desc='intask'),
                      name='ds_cope',
                      run_without_submitting=True)

    ds_varcope = pe.Node(DerivativesDataSink(base_directory=str(output_dir),
                                             keep_dtype=False,
                                             suffix='varcope',
                                             desc='intask'),
                         name='ds_varcope',
                         run_without_submitting=True)

    ds_zstat = pe.Node(DerivativesDataSink(base_directory=str(output_dir),
                                           keep_dtype=False,
                                           suffix='zstat',
                                           desc='intask'),
                       name='ds_zstat',
                       run_without_submitting=True)

    ds_tstat = pe.Node(DerivativesDataSink(base_directory=str(output_dir),
                                           keep_dtype=False,
                                           suffix='tstat',
                                           desc='intask'),
                       name='ds_tstat',
                       run_without_submitting=True)

    workflow.connect([
        (datasource, susan, [('bold', 'inputnode.in_files'),
                             ('mask', 'inputnode.mask_file')]),
        (datasource, runinfo, [('events', 'events_file'),
                               ('regressors', 'regressors_file')]),
        (susan, l1_spec, [('outputnode.smoothed_files', 'functional_runs')]),
        (datasource, l1_spec, [('tr', 'time_repetition')]),
        (datasource, l1_model, [('tr', 'interscan_interval')]),
        (datasource, ds_cope, [('bold', 'source_file')]),
        (datasource, ds_varcope, [('bold', 'source_file')]),
        (datasource, ds_zstat, [('bold', 'source_file')]),
        (datasource, ds_tstat, [('bold', 'source_file')]),
        (susan, runinfo, [('outputnode.smoothed_files', 'in_file')]),
        (runinfo, l1_spec, [('info', 'subject_info'),
                            ('realign_file', 'realignment_parameters')]),
        (l1_spec, l1_model, [('session_info', 'session_info')]),
        (l1_model, feat_spec, [('fsf_files', 'fsf_file'),
                               ('ev_files', 'ev_files')]),
        (l1_model, feat_fit, [('fsf_files', 'fsf_file')]),
        (feat_fit, feat_select, [('feat_dir', 'base_directory')]),
        (feat_select, ds_cope, [('cope', 'in_file')]),
        (feat_select, ds_varcope, [('varcope', 'in_file')]),
        (feat_select, ds_zstat, [('zstat', 'in_file')]),
        (feat_select, ds_tstat, [('tstat', 'in_file')]),
    ])
    return workflow
コード例 #7
0
def first_level_wf(pipeline, subject_id, task_id, output_dir):
    """
    First level workflow
    """
    workflow = pe.Workflow(name='_'.join((pipeline, subject_id, task_id)))

    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'bold_preproc', 'contrasts', 'confounds', 'brainmask', 'events_file'
    ]),
                        name='inputnode')

    outputnode = pe.Node(
        niu.IdentityInterface(fields=['sigma_pre', 'sigma_post', 'out_stats']),
        name='outputnode')

    conf2movpar = pe.Node(niu.Function(function=_confounds2movpar),
                          name='conf2movpar')
    masker = pe.Node(fsl.ApplyMask(), name='masker')
    bim = pe.Node(afni.BlurInMask(fwhm=5.0, outputtype='NIFTI_GZ'),
                  name='bim',
                  mem_gb=20)

    ev = pe.Node(EventsFilesForTask(task=task_id), name='events')

    l1 = pe.Node(SpecifyModel(
        input_units='secs',
        time_repetition=2,
        high_pass_filter_cutoff=100,
        parameter_source='FSL',
    ),
                 name='l1')

    l1model = pe.Node(fsl.Level1Design(interscan_interval=2,
                                       bases={'dgamma': {
                                           'derivs': True
                                       }},
                                       model_serial_correlations=True),
                      name='l1design')

    l1featmodel = pe.Node(fsl.FEATModel(), name='l1model')
    l1estimate = pe.Node(fsl.FEAT(), name='l1estimate', mem_gb=40)

    pre_smooth_afni = pe.Node(afni.FWHMx(combine=True,
                                         detrend=True,
                                         args='-ShowMeClassicFWHM'),
                              name='smooth_pre_afni',
                              mem_gb=20)
    post_smooth_afni = pe.Node(afni.FWHMx(combine=True,
                                          detrend=True,
                                          args='-ShowMeClassicFWHM'),
                               name='smooth_post_afni',
                               mem_gb=20)

    pre_smooth = pe.Node(fsl.SmoothEstimate(), name='smooth_pre', mem_gb=20)
    post_smooth = pe.Node(fsl.SmoothEstimate(), name='smooth_post', mem_gb=20)

    def _resels(val):
        return val**(1 / 3.)

    def _fwhm(fwhm):
        from numpy import mean
        return float(mean(fwhm, dtype=float))

    workflow.connect([
        (inputnode, masker, [('bold_preproc', 'in_file'),
                             ('brainmask', 'mask_file')]),
        (inputnode, ev, [('events_file', 'in_file')]),
        (inputnode, l1model, [('contrasts', 'contrasts')]),
        (inputnode, conf2movpar, [('confounds', 'in_confounds')]),
        (inputnode, bim, [('brainmask', 'mask')]),
        (masker, bim, [('out_file', 'in_file')]),
        (bim, l1, [('out_file', 'functional_runs')]),
        (ev, l1, [('event_files', 'event_files')]),
        (conf2movpar, l1, [('out', 'realignment_parameters')]),
        (l1, l1model, [('session_info', 'session_info')]),
        (ev, l1model, [('orthogonalization', 'orthogonalization')]),
        (l1model, l1featmodel, [('fsf_files', 'fsf_file'),
                                ('ev_files', 'ev_files')]),
        (l1model, l1estimate, [('fsf_files', 'fsf_file')]),
        # Smooth
        (inputnode, pre_smooth, [('bold_preproc', 'zstat_file'),
                                 ('brainmask', 'mask_file')]),
        (bim, post_smooth, [('out_file', 'zstat_file')]),
        (inputnode, post_smooth, [('brainmask', 'mask_file')]),
        (pre_smooth, outputnode, [(('resels', _resels), 'sigma_pre')]),
        (post_smooth, outputnode, [(('resels', _resels), 'sigma_post')]),

        # Smooth with AFNI
        (inputnode, pre_smooth_afni, [('bold_preproc', 'in_file'),
                                      ('brainmask', 'mask')]),
        (bim, post_smooth_afni, [('out_file', 'in_file')]),
        (inputnode, post_smooth_afni, [('brainmask', 'mask')]),
    ])

    # Writing outputs
    csv = pe.Node(AddCSVRow(in_file=str(output_dir / 'smoothness.csv')),
                  name='addcsv_%s_%s' % (subject_id, pipeline))
    csv.inputs.sub_id = subject_id
    csv.inputs.pipeline = pipeline

    # Datasinks
    ds_stats = pe.Node(niu.Function(function=_feat_stats), name='ds_stats')
    ds_stats.inputs.subject_id = subject_id
    ds_stats.inputs.task_id = task_id
    ds_stats.inputs.variant = pipeline
    ds_stats.inputs.out_path = output_dir
    setattr(ds_stats.interface, '_always_run', True)

    workflow.connect([
        (outputnode, csv, [('sigma_pre', 'smooth_pre'),
                           ('sigma_post', 'smooth_post')]),
        (pre_smooth_afni, csv, [(('fwhm', _fwhm), 'fwhm_pre')]),
        (post_smooth_afni, csv, [(('fwhm', _fwhm), 'fwhm_post')]),
        (l1estimate, ds_stats, [('feat_dir', 'feat_dir')]),
        (ds_stats, outputnode, [('out', 'out_stats')]),
    ])
    return workflow
コード例 #8
0
def feat_o(project_name, file_name):
    feat = fsl.FEAT()
    feat.inputs.fsf_file = f'/home/fsluser/Documents/{project_name}' \
                           f'/{file_name}/design.fsf'
    feat.run()