def init_bbreg_wf(use_bbr, bold2t1w_dof, omp_nthreads, name='bbreg_wf'): """ This workflow uses FreeSurfer's ``bbregister`` to register a BOLD image to a T1-weighted structural image. It is a counterpart to :py:func:`~fmriprep.workflows.util.init_fsl_bbr_wf`, which performs the same task using FSL's FLIRT with a BBR cost function. The ``use_bbr`` option permits a high degree of control over registration. If ``False``, standard, affine coregistration will be performed using FreeSurfer's ``mri_coreg`` tool. If ``True``, ``bbregister`` will be seeded with the initial transform found by ``mri_coreg`` (equivalent to running ``bbregister --init-coreg``). If ``None``, after ``bbregister`` is run, the resulting affine transform will be compared to the initial transform found by ``mri_coreg``. Excessive deviation will result in rejecting the BBR refinement and accepting the original, affine registration. .. workflow :: :graph2use: orig :simple_form: yes from fmriprep.workflows.bold.registration import init_bbreg_wf wf = init_bbreg_wf(use_bbr=True, bold2t1w_dof=9, omp_nthreads=1) Parameters use_bbr : bool or None Enable/disable boundary-based registration refinement. If ``None``, test BBR result for distortion before accepting. bold2t1w_dof : 6, 9 or 12 Degrees-of-freedom for BOLD-T1w registration name : str, optional Workflow name (default: bbreg_wf) Inputs in_file Reference BOLD image to be registered t1_2_fsnative_reverse_transform FSL-style affine matrix translating from FreeSurfer T1.mgz to T1w subjects_dir FreeSurfer SUBJECTS_DIR subject_id FreeSurfer subject ID (must have folder in SUBJECTS_DIR) t1_brain Unused (see :py:func:`~fmriprep.workflows.util.init_fsl_bbr_wf`) t1_seg Unused (see :py:func:`~fmriprep.workflows.util.init_fsl_bbr_wf`) Outputs itk_bold_to_t1 Affine transform from ``ref_bold_brain`` to T1 space (ITK format) itk_t1_to_bold Affine transform from T1 space to BOLD space (ITK format) out_report Reportlet for assessing registration quality fallback Boolean indicating whether BBR was rejected (mri_coreg registration returned) """ workflow = pe.Workflow(name=name) inputnode = pe.Node( niu.IdentityInterface([ 'in_file', 't1_2_fsnative_reverse_transform', 'subjects_dir', 'subject_id', # BBRegister 't1_seg', 't1_brain']), # FLIRT BBR name='inputnode') outputnode = pe.Node( niu.IdentityInterface(['itk_bold_to_t1', 'itk_t1_to_bold', 'out_report', 'fallback']), name='outputnode') mri_coreg = pe.Node( MRICoregRPT(dof=bold2t1w_dof, sep=[4], ftol=0.0001, linmintol=0.01, generate_report=not use_bbr), name='mri_coreg', n_procs=omp_nthreads, mem_gb=5) lta_concat = pe.Node(ConcatenateLTA(out_file='out.lta'), name='lta_concat') # XXX LTA-FSL-ITK may ultimately be able to be replaced with a straightforward # LTA-ITK transform, but right now the translation parameters are off. lta2fsl_fwd = pe.Node(fs.utils.LTAConvert(out_fsl=True), name='lta2fsl_fwd') lta2fsl_inv = pe.Node(fs.utils.LTAConvert(out_fsl=True, invert=True), name='lta2fsl_inv') fsl2itk_fwd = pe.Node(c3.C3dAffineTool(fsl2ras=True, itk_transform=True), name='fsl2itk_fwd', mem_gb=DEFAULT_MEMORY_MIN_GB) fsl2itk_inv = pe.Node(c3.C3dAffineTool(fsl2ras=True, itk_transform=True), name='fsl2itk_inv', mem_gb=DEFAULT_MEMORY_MIN_GB) workflow.connect([ (inputnode, mri_coreg, [('subjects_dir', 'subjects_dir'), ('subject_id', 'subject_id'), ('in_file', 'source_file')]), # Output ITK transforms (inputnode, lta_concat, [('t1_2_fsnative_reverse_transform', 'in_lta2')]), (lta_concat, lta2fsl_fwd, [('out_file', 'in_lta')]), (lta_concat, lta2fsl_inv, [('out_file', 'in_lta')]), (inputnode, fsl2itk_fwd, [('t1_brain', 'reference_file'), ('in_file', 'source_file')]), (inputnode, fsl2itk_inv, [('in_file', 'reference_file'), ('t1_brain', 'source_file')]), (lta2fsl_fwd, fsl2itk_fwd, [('out_fsl', 'transform_file')]), (lta2fsl_inv, fsl2itk_inv, [('out_fsl', 'transform_file')]), (fsl2itk_fwd, outputnode, [('itk_transform', 'itk_bold_to_t1')]), (fsl2itk_inv, outputnode, [('itk_transform', 'itk_t1_to_bold')]), ]) # Short-circuit workflow building, use initial registration if use_bbr is False: workflow.connect([ (mri_coreg, outputnode, [('out_report', 'out_report')]), (mri_coreg, lta_concat, [('out_lta_file', 'in_lta1')])]) outputnode.inputs.fallback = True return workflow bbregister = pe.Node( BBRegisterRPT(dof=bold2t1w_dof, contrast_type='t2', registered_file=True, out_lta_file=True, generate_report=True), name='bbregister', mem_gb=12) workflow.connect([ (inputnode, bbregister, [('subjects_dir', 'subjects_dir'), ('subject_id', 'subject_id'), ('in_file', 'source_file')]), (mri_coreg, bbregister, [('out_lta_file', 'init_reg_file')]), ]) # Short-circuit workflow building, use boundary-based registration if use_bbr is True: workflow.connect([ (bbregister, outputnode, [('out_report', 'out_report')]), (bbregister, lta_concat, [('out_lta_file', 'in_lta1')])]) outputnode.inputs.fallback = False return workflow transforms = pe.Node(niu.Merge(2), run_without_submitting=True, name='transforms') reports = pe.Node(niu.Merge(2), run_without_submitting=True, name='reports') lta_ras2ras = pe.MapNode(fs.utils.LTAConvert(out_lta=True), iterfield=['in_lta'], name='lta_ras2ras', mem_gb=2) compare_transforms = pe.Node(niu.Function(function=compare_xforms), name='compare_transforms') select_transform = pe.Node(niu.Select(), run_without_submitting=True, name='select_transform') select_report = pe.Node(niu.Select(), run_without_submitting=True, name='select_report') workflow.connect([ (bbregister, transforms, [('out_lta_file', 'in1')]), (mri_coreg, transforms, [('out_lta_file', 'in2')]), # Normalize LTA transforms to RAS2RAS (inputs are VOX2VOX) and compare (transforms, lta_ras2ras, [('out', 'in_lta')]), (lta_ras2ras, compare_transforms, [('out_lta', 'lta_list')]), (compare_transforms, outputnode, [('out', 'fallback')]), # Select output transform (transforms, select_transform, [('out', 'inlist')]), (compare_transforms, select_transform, [('out', 'index')]), (select_transform, lta_concat, [('out', 'in_lta1')]), # Select output report (bbregister, reports, [('out_report', 'in1')]), (mri_coreg, reports, [('out_report', 'in2')]), (reports, select_report, [('out', 'inlist')]), (compare_transforms, select_report, [('out', 'index')]), (select_report, outputnode, [('out', 'out_report')]), ]) return workflow
def init_fsl_bbr_wf(use_bbr, bold2t1w_dof, name='fsl_bbr_wf'): """ This workflow uses FSL FLIRT to register a BOLD image to a T1-weighted structural image, using a boundary-based registration (BBR) cost function. It is a counterpart to :py:func:`~fmriprep.workflows.bold.registration.init_bbreg_wf`, which performs the same task using FreeSurfer's ``bbregister``. The ``use_bbr`` option permits a high degree of control over registration. If ``False``, standard, rigid coregistration will be performed by FLIRT. If ``True``, FLIRT-BBR will be seeded with the initial transform found by the rigid coregistration. If ``None``, after FLIRT-BBR is run, the resulting affine transform will be compared to the initial transform found by FLIRT. Excessive deviation will result in rejecting the BBR refinement and accepting the original, affine registration. .. workflow :: :graph2use: orig :simple_form: yes from fmriprep.workflows.bold.registration import init_fsl_bbr_wf wf = init_fsl_bbr_wf(use_bbr=True, bold2t1w_dof=9) Parameters use_bbr : bool or None Enable/disable boundary-based registration refinement. If ``None``, test BBR result for distortion before accepting. bold2t1w_dof : 6, 9 or 12 Degrees-of-freedom for BOLD-T1w registration name : str, optional Workflow name (default: fsl_bbr_wf) Inputs in_file Reference BOLD image to be registered t1_brain Skull-stripped T1-weighted structural image t1_seg FAST segmentation of ``t1_brain`` t1_2_fsnative_reverse_transform Unused (see :py:func:`~fmriprep.workflows.util.init_bbreg_wf`) subjects_dir Unused (see :py:func:`~fmriprep.workflows.util.init_bbreg_wf`) subject_id Unused (see :py:func:`~fmriprep.workflows.util.init_bbreg_wf`) Outputs itk_bold_to_t1 Affine transform from ``ref_bold_brain`` to T1 space (ITK format) itk_t1_to_bold Affine transform from T1 space to BOLD space (ITK format) out_report Reportlet for assessing registration quality fallback Boolean indicating whether BBR was rejected (rigid FLIRT registration returned) """ workflow = pe.Workflow(name=name) inputnode = pe.Node( niu.IdentityInterface([ 'in_file', 't1_2_fsnative_reverse_transform', 'subjects_dir', 'subject_id', # BBRegister 't1_seg', 't1_brain']), # FLIRT BBR name='inputnode') outputnode = pe.Node( niu.IdentityInterface(['itk_bold_to_t1', 'itk_t1_to_bold', 'out_report', 'fallback']), name='outputnode') wm_mask = pe.Node(niu.Function(function=extract_wm), name='wm_mask') flt_bbr_init = pe.Node(FLIRTRPT(dof=6, generate_report=not use_bbr), name='flt_bbr_init') invt_bbr = pe.Node(fsl.ConvertXFM(invert_xfm=True), name='invt_bbr', mem_gb=DEFAULT_MEMORY_MIN_GB) # BOLD to T1 transform matrix is from fsl, using c3 tools to convert to # something ANTs will like. fsl2itk_fwd = pe.Node(c3.C3dAffineTool(fsl2ras=True, itk_transform=True), name='fsl2itk_fwd', mem_gb=DEFAULT_MEMORY_MIN_GB) fsl2itk_inv = pe.Node(c3.C3dAffineTool(fsl2ras=True, itk_transform=True), name='fsl2itk_inv', mem_gb=DEFAULT_MEMORY_MIN_GB) workflow.connect([ (inputnode, flt_bbr_init, [('in_file', 'in_file'), ('t1_brain', 'reference')]), (inputnode, fsl2itk_fwd, [('t1_brain', 'reference_file'), ('in_file', 'source_file')]), (inputnode, fsl2itk_inv, [('in_file', 'reference_file'), ('t1_brain', 'source_file')]), (invt_bbr, fsl2itk_inv, [('out_file', 'transform_file')]), (fsl2itk_fwd, outputnode, [('itk_transform', 'itk_bold_to_t1')]), (fsl2itk_inv, outputnode, [('itk_transform', 'itk_t1_to_bold')]), ]) # Short-circuit workflow building, use rigid registration if use_bbr is False: workflow.connect([ (flt_bbr_init, invt_bbr, [('out_matrix_file', 'in_file')]), (flt_bbr_init, fsl2itk_fwd, [('out_matrix_file', 'transform_file')]), (flt_bbr_init, outputnode, [('out_report', 'out_report')]), ]) outputnode.inputs.fallback = True return workflow flt_bbr = pe.Node( FLIRTRPT(cost_func='bbr', dof=bold2t1w_dof, generate_report=True, schedule=op.join(os.getenv('FSLDIR'), 'etc/flirtsch/bbr.sch')), name='flt_bbr') workflow.connect([ (inputnode, wm_mask, [('t1_seg', 'in_seg')]), (inputnode, flt_bbr, [('in_file', 'in_file'), ('t1_brain', 'reference')]), (flt_bbr_init, flt_bbr, [('out_matrix_file', 'in_matrix_file')]), (wm_mask, flt_bbr, [('out', 'wm_seg')]), ]) # Short-circuit workflow building, use boundary-based registration if use_bbr is True: workflow.connect([ (flt_bbr, invt_bbr, [('out_matrix_file', 'in_file')]), (flt_bbr, fsl2itk_fwd, [('out_matrix_file', 'transform_file')]), (flt_bbr, outputnode, [('out_report', 'out_report')]), ]) outputnode.inputs.fallback = False return workflow transforms = pe.Node(niu.Merge(2), run_without_submitting=True, name='transforms') reports = pe.Node(niu.Merge(2), run_without_submitting=True, name='reports') compare_transforms = pe.Node(niu.Function(function=compare_xforms), name='compare_transforms') select_transform = pe.Node(niu.Select(), run_without_submitting=True, name='select_transform') select_report = pe.Node(niu.Select(), run_without_submitting=True, name='select_report') fsl_to_lta = pe.MapNode(fs.utils.LTAConvert(out_lta=True), iterfield=['in_fsl'], name='fsl_to_lta') workflow.connect([ (flt_bbr, transforms, [('out_matrix_file', 'in1')]), (flt_bbr_init, transforms, [('out_matrix_file', 'in2')]), # Convert FSL transforms to LTA (RAS2RAS) transforms and compare (inputnode, fsl_to_lta, [('in_file', 'source_file'), ('t1_brain', 'target_file')]), (transforms, fsl_to_lta, [('out', 'in_fsl')]), (fsl_to_lta, compare_transforms, [('out_lta', 'lta_list')]), (compare_transforms, outputnode, [('out', 'fallback')]), # Select output transform (transforms, select_transform, [('out', 'inlist')]), (compare_transforms, select_transform, [('out', 'index')]), (select_transform, invt_bbr, [('out', 'in_file')]), (select_transform, fsl2itk_fwd, [('out', 'transform_file')]), (flt_bbr, reports, [('out_report', 'in1')]), (flt_bbr_init, reports, [('out_report', 'in2')]), (reports, select_report, [('out', 'inlist')]), (compare_transforms, select_report, [('out', 'index')]), (select_report, outputnode, [('out', 'out_report')]), ]) return workflow
def init_func_preproc_wf(bold_file, ignore, freesurfer, use_bbr, t2s_coreg, bold2t1w_dof, reportlets_dir, output_spaces, template, output_dir, omp_nthreads, fmap_bspline, fmap_demean, use_syn, force_syn, use_aroma, ignore_aroma_err, medial_surface_nan, debug, low_mem, output_grid_ref, layout=None): """ This workflow controls the functional preprocessing stages of FMRIPREP. .. workflow:: :graph2use: orig :simple_form: yes from fmriprep.workflows.bold import init_func_preproc_wf wf = init_func_preproc_wf('/completely/made/up/path/sub-01_task-nback_bold.nii.gz', omp_nthreads=1, ignore=[], freesurfer=True, reportlets_dir='.', output_dir='.', template='MNI152NLin2009cAsym', output_spaces=['T1w', 'fsnative', 'template', 'fsaverage5'], debug=False, use_bbr=True, t2s_coreg=False, bold2t1w_dof=9, fmap_bspline=True, fmap_demean=True, use_syn=True, force_syn=True, low_mem=False, output_grid_ref=None, medial_surface_nan=False, use_aroma=False, ignore_aroma_err=False) **Parameters** bold_file : str BOLD series NIfTI file ignore : list Preprocessing steps to skip (may include "slicetiming", "fieldmaps") freesurfer : bool Enable FreeSurfer functional registration (bbregister) and resampling BOLD series to FreeSurfer surface meshes. use_bbr : bool or None Enable/disable boundary-based registration refinement. If ``None``, test BBR result for distortion before accepting. t2s_coreg : bool Use multiple BOLD echos to create T2*-map for T2*-driven coregistration bold2t1w_dof : 6, 9 or 12 Degrees-of-freedom for BOLD-T1w registration reportlets_dir : str Directory in which to save reportlets output_spaces : list List of output spaces functional images are to be resampled to. Some parts of pipeline will only be instantiated for some output spaces. Valid spaces: - T1w - template - fsnative - fsaverage (or other pre-existing FreeSurfer templates) template : str Name of template targeted by `'template'` output space output_dir : str Directory in which to save derivatives omp_nthreads : int Maximum number of threads an individual process may use fmap_bspline : bool **Experimental**: Fit B-Spline field using least-squares fmap_demean : bool Demean voxel-shift map during unwarp use_syn : bool **Experimental**: Enable ANTs SyN-based susceptibility distortion correction (SDC). If fieldmaps are present and enabled, this is not run, by default. force_syn : bool **Temporary**: Always run SyN-based SDC use_aroma : bool Perform ICA-AROMA on MNI-resampled functional series ignore_aroma_err : bool Do not fail on ICA-AROMA errors medial_surface_nan : bool Replace medial wall values with NaNs on functional GIFTI files debug : bool Enable debugging outputs low_mem : bool Write uncompressed .nii files in some cases to reduce memory usage output_grid_ref : str or None Path of custom reference image for normalization layout : BIDSLayout BIDSLayout structure to enable metadata retrieval **Inputs** bold_file BOLD series NIfTI file t1_preproc Bias-corrected structural template image t1_brain Skull-stripped ``t1_preproc`` t1_mask Mask of the skull-stripped template image t1_seg Segmentation of preprocessed structural image, including gray-matter (GM), white-matter (WM) and cerebrospinal fluid (CSF) t1_tpms List of tissue probability maps in T1w space t1_2_mni_forward_transform ANTs-compatible affine-and-warp transform file t1_2_mni_reverse_transform ANTs-compatible affine-and-warp transform file (inverse) subjects_dir FreeSurfer SUBJECTS_DIR subject_id FreeSurfer subject ID t1_2_fsnative_forward_transform LTA-style affine matrix translating from T1w to FreeSurfer-conformed subject space t1_2_fsnative_reverse_transform LTA-style affine matrix translating from FreeSurfer-conformed subject space to T1w **Outputs** bold_t1 BOLD series, resampled to T1w space bold_mask_t1 BOLD series mask in T1w space bold_mni BOLD series, resampled to template space bold_mask_mni BOLD series mask in template space confounds TSV of confounds surfaces BOLD series, resampled to FreeSurfer surfaces aroma_noise_ics Noise components identified by ICA-AROMA melodic_mix FSL MELODIC mixing matrix **Subworkflows** * :py:func:`~fmriprep.workflows.bold.util.init_bold_reference_wf` * :py:func:`~fmriprep.workflows.bold.stc.init_bold_stc_wf` * :py:func:`~fmriprep.workflows.bold.hmc.init_bold_hmc_wf` * :py:func:`~fmriprep.workflows.bold.t2s.init_bold_t2s_wf` * :py:func:`~fmriprep.workflows.bold.registration.init_bold_reg_wf` * :py:func:`~fmriprep.workflows.bold.confounds.init_bold_confounds_wf` * :py:func:`~fmriprep.workflows.bold.confounds.init_ica_aroma_wf` * :py:func:`~fmriprep.workflows.bold.resampling.init_bold_mni_trans_wf` * :py:func:`~fmriprep.workflows.bold.resampling.init_bold_preproc_trans_wf` * :py:func:`~fmriprep.workflows.bold.resampling.init_bold_surf_wf` * :py:func:`~fmriprep.workflows.fieldmap.pepolar.init_pepolar_unwarp_wf` * :py:func:`~fmriprep.workflows.fieldmap.init_fmap_estimator_wf` * :py:func:`~fmriprep.workflows.fieldmap.init_sdc_unwarp_wf` * :py:func:`~fmriprep.workflows.fieldmap.init_nonlinear_sdc_wf` """ ref_file = bold_file mem_gb = {'filesize': 1, 'resampled': 1, 'largemem': 1} bold_tlen = 10 multiecho = isinstance(bold_file, list) if multiecho: tes = [layout.get_metadata(echo)['EchoTime'] for echo in bold_file] ref_file = dict(zip(tes, bold_file))[min(tes)] if os.path.isfile(ref_file): bold_tlen, mem_gb = _create_mem_gb(ref_file) wf_name = _get_wf_name(ref_file) LOGGER.log( 25, ('Creating bold processing workflow for "%s" (%.2f GB / %d TRs). ' 'Memory resampled/largemem=%.2f/%.2f GB.'), ref_file, mem_gb['filesize'], bold_tlen, mem_gb['resampled'], mem_gb['largemem']) # For doc building purposes if layout is None or bold_file == 'bold_preprocesing': LOGGER.log(25, 'No valid layout: building empty workflow.') metadata = { 'RepetitionTime': 2.0, 'SliceTiming': [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], 'PhaseEncodingDirection': 'j', } fmaps = [{ 'type': 'phasediff', 'phasediff': 'sub-03/ses-2/fmap/sub-03_ses-2_run-1_phasediff.nii.gz', 'magnitude1': 'sub-03/ses-2/fmap/sub-03_ses-2_run-1_magnitude1.nii.gz', 'magnitude2': 'sub-03/ses-2/fmap/sub-03_ses-2_run-1_magnitude2.nii.gz', }] run_stc = True multiecho = False else: metadata = layout.get_metadata(ref_file) # Find fieldmaps. Options: (phase1|phase2|phasediff|epi|fieldmap|syn) fmaps = [] if 'fieldmaps' not in ignore: fmaps = layout.get_fieldmap(ref_file, return_list=True) for fmap in fmaps: fmap['metadata'] = layout.get_metadata(fmap[fmap['type']]) # Run SyN if forced or in the absence of fieldmap correction if force_syn or (use_syn and not fmaps): fmaps.append({'type': 'syn'}) # Short circuits: (True and True and (False or 'TooShort')) == 'TooShort' run_stc = ("SliceTiming" in metadata and 'slicetiming' not in ignore and (_get_series_len(bold_file) > 4 or "TooShort")) # Use T2* as target for ME-EPI in co-registration if t2s_coreg and not multiecho: LOGGER.warning( "No multiecho BOLD images found for T2* coregistration. " "Using standard EPI-T1 coregistration.") t2s_coreg = False # Build workflow workflow = pe.Workflow(name=wf_name) inputnode = pe.Node(niu.IdentityInterface(fields=[ 'bold_file', 'subjects_dir', 'subject_id', 't1_preproc', 't1_brain', 't1_mask', 't1_seg', 't1_tpms', 't1_aseg', 't1_aparc', 't1_2_mni_forward_transform', 't1_2_mni_reverse_transform', 't1_2_fsnative_forward_transform', 't1_2_fsnative_reverse_transform' ]), name='inputnode') inputnode.inputs.bold_file = bold_file outputnode = pe.Node(niu.IdentityInterface(fields=[ 'bold_t1', 'bold_mask_t1', 'bold_aseg_t1', 'bold_aparc_t1', 'bold_mni', 'bold_mask_mni', 'confounds', 'surfaces', 't2s_map', 'aroma_noise_ics', 'melodic_mix', 'nonaggr_denoised_file' ]), name='outputnode') # BOLD buffer: an identity used as a pointer to either the original BOLD # or the STC'ed one for further use. boldbuffer = pe.Node(niu.IdentityInterface(fields=['bold_file']), name='boldbuffer') summary = pe.Node(FunctionalSummary( output_spaces=output_spaces, slice_timing=run_stc, registration='FreeSurfer' if freesurfer else 'FSL', registration_dof=bold2t1w_dof, pe_direction=metadata.get("PhaseEncodingDirection")), name='summary', mem_gb=DEFAULT_MEMORY_MIN_GB, run_without_submitting=True) func_reports_wf = init_func_reports_wf(reportlets_dir=reportlets_dir, freesurfer=freesurfer, use_aroma=use_aroma, use_syn=use_syn, t2s_coreg=t2s_coreg) func_derivatives_wf = init_func_derivatives_wf(output_dir=output_dir, output_spaces=output_spaces, template=template, freesurfer=freesurfer, use_aroma=use_aroma) workflow.connect([ (inputnode, func_reports_wf, [('bold_file', 'inputnode.source_file')]), (inputnode, func_derivatives_wf, [('bold_file', 'inputnode.source_file')]), (outputnode, func_derivatives_wf, [ ('bold_t1', 'inputnode.bold_t1'), ('bold_aseg_t1', 'inputnode.bold_aseg_t1'), ('bold_aparc_t1', 'inputnode.bold_aparc_t1'), ('bold_mask_t1', 'inputnode.bold_mask_t1'), ('bold_mni', 'inputnode.bold_mni'), ('bold_mask_mni', 'inputnode.bold_mask_mni'), ('confounds', 'inputnode.confounds'), ('surfaces', 'inputnode.surfaces'), ('aroma_noise_ics', 'inputnode.aroma_noise_ics'), ('melodic_mix', 'inputnode.melodic_mix'), ('nonaggr_denoised_file', 'inputnode.nonaggr_denoised_file'), ]), ]) # The first reference uses T2 contrast enhancement bold_reference_wf = init_bold_reference_wf(omp_nthreads=omp_nthreads, enhance_t2=True) # Top-level BOLD splitter bold_split = pe.Node(FSLSplit(dimension='t'), name='bold_split', mem_gb=mem_gb['filesize'] * 3) # HMC on the BOLD bold_hmc_wf = init_bold_hmc_wf(name='bold_hmc_wf', mem_gb=mem_gb['filesize'], omp_nthreads=omp_nthreads) # mean BOLD registration to T1w bold_reg_wf = init_bold_reg_wf(name='bold_reg_wf', freesurfer=freesurfer, use_bbr=use_bbr, bold2t1w_dof=bold2t1w_dof, mem_gb=mem_gb['resampled'], omp_nthreads=omp_nthreads, use_compression=False, use_fieldwarp=(fmaps is not None or use_syn)) # get confounds bold_confounds_wf = init_bold_confs_wf(mem_gb=mem_gb['largemem'], metadata=metadata, name='bold_confounds_wf') bold_confounds_wf.get_node('inputnode').inputs.t1_transform_flags = [False] # Apply transforms in 1 shot # Only use uncompressed output if AROMA is to be run bold_bold_trans_wf = init_bold_preproc_trans_wf( mem_gb=mem_gb['resampled'], omp_nthreads=omp_nthreads, use_compression=not low_mem, use_fieldwarp=(fmaps is not None or use_syn), name='bold_bold_trans_wf') # SLICE-TIME CORRECTION (or bypass) ############################################# if run_stc is True: # bool('TooShort') == True, so check True explicitly bold_stc_wf = init_bold_stc_wf(name='bold_stc_wf', metadata=metadata) workflow.connect([ (bold_stc_wf, boldbuffer, [('outputnode.stc_file', 'bold_file')]), (bold_reference_wf, bold_stc_wf, [('outputnode.bold_file', 'inputnode.bold_file'), ('outputnode.skip_vols', 'inputnode.skip_vols')]), ]) else: # bypass STC from original BOLD to the splitter through boldbuffer workflow.connect([ (bold_reference_wf, boldbuffer, [('outputnode.bold_file', 'bold_file')]), ]) # SDC (SUSCEPTIBILITY DISTORTION CORRECTION) or bypass ########################## bold_sdc_wf = init_sdc_wf(fmaps, metadata, omp_nthreads=omp_nthreads, debug=debug, fmap_demean=fmap_demean, fmap_bspline=fmap_bspline) bold_sdc_wf.inputs.inputnode.template = template if not fmaps: LOGGER.warning('SDC: no fieldmaps found or they were ignored (%s).', ref_file) elif fmaps[0]['type'] == 'syn': LOGGER.warning( 'SDC: no fieldmaps found or they were ignored. ' 'Using EXPERIMENTAL "fieldmap-less SyN" correction ' 'for dataset %s.', ref_file) else: LOGGER.log( 25, 'SDC: fieldmap estimation of type "%s" intended for %s found.', fmaps[0]['type'], ref_file) # MAIN WORKFLOW STRUCTURE ####################################################### workflow.connect([ # BOLD buffer has slice-time corrected if it was run, original otherwise (boldbuffer, bold_split, [('bold_file', 'in_file')]), # Generate early reference (inputnode, bold_reference_wf, [('bold_file', 'inputnode.bold_file')]), (bold_reference_wf, func_reports_wf, [('outputnode.validation_report', 'inputnode.validation_report')]), # EPI-T1 registration workflow ( inputnode, bold_reg_wf, [ ('bold_file', 'inputnode.name_source'), ('t1_preproc', 'inputnode.t1_preproc'), ('t1_brain', 'inputnode.t1_brain'), ('t1_mask', 'inputnode.t1_mask'), ('t1_seg', 'inputnode.t1_seg'), ('t1_aseg', 'inputnode.t1_aseg'), ('t1_aparc', 'inputnode.t1_aparc'), # Undefined if --no-freesurfer, but this is safe ('subjects_dir', 'inputnode.subjects_dir'), ('subject_id', 'inputnode.subject_id'), ('t1_2_fsnative_reverse_transform', 'inputnode.t1_2_fsnative_reverse_transform') ]), (bold_split, bold_reg_wf, [('out_files', 'inputnode.bold_split')]), (bold_hmc_wf, bold_reg_wf, [('outputnode.xforms', 'inputnode.hmc_xforms')]), (bold_reg_wf, func_reports_wf, [ ('outputnode.out_report', 'inputnode.bold_reg_report'), ('outputnode.fallback', 'inputnode.bold_reg_fallback'), ]), (bold_reg_wf, outputnode, [('outputnode.bold_t1', 'bold_t1'), ('outputnode.bold_aseg_t1', 'bold_aseg_t1'), ('outputnode.bold_aparc_t1', 'bold_aparc_t1')]), (bold_reg_wf, summary, [('outputnode.fallback', 'fallback')]), # SDC (or pass-through workflow) (inputnode, bold_sdc_wf, [('t1_brain', 'inputnode.t1_brain'), ('t1_2_mni_reverse_transform', 'inputnode.t1_2_mni_reverse_transform')]), (bold_reference_wf, bold_sdc_wf, [('outputnode.ref_image', 'inputnode.bold_ref'), ('outputnode.ref_image_brain', 'inputnode.bold_ref_brain'), ('outputnode.bold_mask', 'inputnode.bold_mask')]), (bold_sdc_wf, bold_reg_wf, [('outputnode.bold_ref_brain', 'inputnode.ref_bold_brain'), ('outputnode.bold_mask', 'inputnode.ref_bold_mask'), ('outputnode.out_warp', 'inputnode.fieldwarp')]), (bold_sdc_wf, bold_bold_trans_wf, [('outputnode.out_warp', 'inputnode.fieldwarp'), ('outputnode.bold_mask', 'inputnode.bold_mask')]), (bold_sdc_wf, summary, [('outputnode.method', 'distortion_correction') ]), # Connect bold_confounds_wf (inputnode, bold_confounds_wf, [('t1_tpms', 'inputnode.t1_tpms'), ('t1_mask', 'inputnode.t1_mask')]), (bold_hmc_wf, bold_confounds_wf, [('outputnode.movpar_file', 'inputnode.movpar_file')]), (bold_reg_wf, bold_confounds_wf, [('outputnode.itk_t1_to_bold', 'inputnode.t1_bold_xform')]), (bold_confounds_wf, func_reports_wf, [('outputnode.rois_report', 'inputnode.bold_rois_report')]), (bold_confounds_wf, outputnode, [ ('outputnode.confounds_file', 'confounds'), ]), # Connect bold_bold_trans_wf (inputnode, bold_bold_trans_wf, [('bold_file', 'inputnode.name_source') ]), (bold_split, bold_bold_trans_wf, [('out_files', 'inputnode.bold_split') ]), (bold_hmc_wf, bold_bold_trans_wf, [('outputnode.xforms', 'inputnode.hmc_xforms')]), (bold_bold_trans_wf, bold_confounds_wf, [('outputnode.bold', 'inputnode.bold'), ('outputnode.bold_mask', 'inputnode.bold_mask')]), # Summary (outputnode, summary, [('confounds', 'confounds_file')]), (summary, func_reports_wf, [('out_report', 'inputnode.summary_report') ]), ]) if fmaps: from ..fieldmap.unwarp import init_fmap_unwarp_report_wf sdc_type = fmaps[0]['type'] # Report on BOLD correction fmap_unwarp_report_wf = init_fmap_unwarp_report_wf(suffix='sdc_%s' % sdc_type) workflow.connect([ (inputnode, fmap_unwarp_report_wf, [('t1_seg', 'inputnode.in_seg') ]), (bold_reference_wf, fmap_unwarp_report_wf, [('outputnode.ref_image', 'inputnode.in_pre')]), (bold_reg_wf, fmap_unwarp_report_wf, [('outputnode.itk_t1_to_bold', 'inputnode.in_xfm')]), (bold_sdc_wf, fmap_unwarp_report_wf, [('outputnode.bold_ref', 'inputnode.in_post')]), ]) if force_syn and sdc_type != 'syn': syn_unwarp_report_wf = init_fmap_unwarp_report_wf( suffix='forcedsyn', name='syn_unwarp_report_wf') workflow.connect([ (inputnode, syn_unwarp_report_wf, [('t1_seg', 'inputnode.in_seg')]), (bold_reference_wf, syn_unwarp_report_wf, [('outputnode.ref_image', 'inputnode.in_pre')]), (bold_reg_wf, syn_unwarp_report_wf, [('outputnode.itk_t1_to_bold', 'inputnode.in_xfm')]), (bold_sdc_wf, syn_unwarp_report_wf, [('outputnode.syn_bold_ref', 'inputnode.in_post')]), ]) # Fill-in datasinks of reportlets seen so far for node in workflow.list_node_names(): if node.split('.')[-1].startswith('ds_report'): workflow.get_node(node).inputs.base_directory = reportlets_dir workflow.get_node(node).inputs.source_file = bold_file # if multiecho data, select first echo for hmc correction if multiecho: inputnode.iterables = ('bold_file', bold_file) me_first_echo = pe.JoinNode(interface=FirstEcho(te_list=tes), joinfield=['in_files', 'ref_imgs'], joinsource='inputnode', name='me_first_echo') workflow.connect([(bold_reference_wf, me_first_echo, [('outputnode.bold_file', 'in_files'), ('outputnode.raw_ref_image', 'ref_imgs')]), (me_first_echo, bold_hmc_wf, [('first_image', 'inputnode.bold_file'), ('first_ref_image', 'inputnode.raw_ref_image')])]) if t2s_coreg: # use a joinNode to gather all preprocessed echos join_split_echos = pe.JoinNode( niu.IdentityInterface(fields=['echo_files']), joinsource='inputnode', joinfield='echo_files', name='join_split_echos') # create a T2* map bold_t2s_wf = init_bold_t2s_wf(echo_times=tes, name='bold_t2s_wf', mem_gb=mem_gb['filesize'], omp_nthreads=omp_nthreads) subset_reg_reports = pe.JoinNode(niu.Select(index=0), name='subset_reg_reports', joinsource=inputnode, joinfield=['inlist']) subset_reg_fallbacks = pe.JoinNode(niu.Select(index=0), name='subset_reg_fallbacks', joinsource=inputnode, joinfield=['inlist']) first_echo = pe.Node(niu.IdentityInterface(fields=['first_echo']), name='first_echo') first_echo.inputs.first_echo = ref_file # remove duplicate registration reports workflow.disconnect([ (bold_reg_wf, func_reports_wf, [('outputnode.out_report', 'inputnode.bold_reg_report'), ('outputnode.fallback', 'inputnode.bold_reg_fallback')]), (bold_sdc_wf, bold_reg_wf, [('outputnode.out_warp', 'inputnode.fieldwarp'), ('outputnode.bold_ref_brain', 'inputnode.ref_bold_brain'), ('outputnode.bold_mask', 'inputnode.ref_bold_mask')]), ]) workflow.connect([ (first_echo, func_reports_wf, [('first_echo', 'inputnode.first_echo')]), (bold_split, join_split_echos, [('out_files', 'echo_files')]), (join_split_echos, bold_t2s_wf, [('echo_files', 'inputnode.echo_split')]), (bold_hmc_wf, bold_t2s_wf, [('outputnode.xforms', 'inputnode.hmc_xforms')]), (bold_t2s_wf, bold_reg_wf, [('outputnode.t2s_map', 'inputnode.ref_bold_brain'), ('outputnode.oc_mask', 'inputnode.ref_bold_mask')]), (bold_reg_wf, subset_reg_reports, [('outputnode.out_report', 'inlist')]), (bold_reg_wf, subset_reg_fallbacks, [('outputnode.fallback', 'inlist')]), (subset_reg_reports, func_reports_wf, [('out', 'inputnode.bold_reg_report')]), (subset_reg_fallbacks, func_reports_wf, [('out', 'inputnode.bold_reg_fallback')]), ]) else: workflow.connect([(bold_reference_wf, bold_hmc_wf, [ ('outputnode.raw_ref_image', 'inputnode.raw_ref_image'), ('outputnode.bold_file', 'inputnode.bold_file') ])]) # Map final BOLD mask into T1w space (if required) if 'T1w' in output_spaces: from niworkflows.interfaces.fixes import (FixHeaderApplyTransforms as ApplyTransforms) boldmask_to_t1w = pe.Node(ApplyTransforms(interpolation='MultiLabel', float=True), name='boldmask_to_t1w', mem_gb=0.1) workflow.connect([ (bold_bold_trans_wf, boldmask_to_t1w, [('outputnode.bold_mask', 'input_image')]), (bold_reg_wf, boldmask_to_t1w, [('outputnode.bold_mask_t1', 'reference_image'), ('outputnode.itk_bold_to_t1', 'transforms')]), (boldmask_to_t1w, outputnode, [('output_image', 'bold_mask_t1')]), ]) if 'template' in output_spaces: # Apply transforms in 1 shot # Only use uncompressed output if AROMA is to be run bold_mni_trans_wf = init_bold_mni_trans_wf( template=template, mem_gb=mem_gb['resampled'], omp_nthreads=omp_nthreads, output_grid_ref=output_grid_ref, use_compression=not (low_mem and use_aroma), use_fieldwarp=fmaps is not None, name='bold_mni_trans_wf') workflow.connect([ (inputnode, bold_mni_trans_wf, [('bold_file', 'inputnode.name_source'), ('t1_2_mni_forward_transform', 'inputnode.t1_2_mni_forward_transform')]), (bold_split, bold_mni_trans_wf, [('out_files', 'inputnode.bold_split')]), (bold_hmc_wf, bold_mni_trans_wf, [('outputnode.xforms', 'inputnode.hmc_xforms')]), (bold_reg_wf, bold_mni_trans_wf, [('outputnode.itk_bold_to_t1', 'inputnode.itk_bold_to_t1')]), (bold_bold_trans_wf, bold_mni_trans_wf, [('outputnode.bold_mask', 'inputnode.bold_mask')]), (bold_sdc_wf, bold_mni_trans_wf, [('outputnode.out_warp', 'inputnode.fieldwarp')]), (bold_mni_trans_wf, outputnode, [('outputnode.bold_mni', 'bold_mni'), ('outputnode.bold_mask_mni', 'bold_mask_mni')]), ]) if use_aroma: # ICA-AROMA workflow """ ica_aroma_report Reportlet visualizing MELODIC ICs, with ICA-AROMA signal/noise labels aroma_noise_ics CSV of noise components identified by ICA-AROMA melodic_mix FSL MELODIC mixing matrix nonaggr_denoised_file BOLD series with non-aggressive ICA-AROMA denoising applied """ from .confounds import init_ica_aroma_wf from ...interfaces import JoinTSVColumns ica_aroma_wf = init_ica_aroma_wf(name='ica_aroma_wf', ignore_aroma_err=ignore_aroma_err) join = pe.Node(JoinTSVColumns(), name='aroma_confounds') workflow.disconnect([ (bold_confounds_wf, outputnode, [ ('outputnode.confounds_file', 'confounds'), ]), ]) workflow.connect([ (bold_hmc_wf, ica_aroma_wf, [('outputnode.movpar_file', 'inputnode.movpar_file')]), (bold_mni_trans_wf, ica_aroma_wf, [('outputnode.bold_mask_mni', 'inputnode.bold_mask_mni'), ('outputnode.bold_mni', 'inputnode.bold_mni')]), (bold_confounds_wf, join, [('outputnode.confounds_file', 'in_file')]), (ica_aroma_wf, join, [('outputnode.aroma_confounds', 'join_file')]), (ica_aroma_wf, outputnode, [('outputnode.aroma_noise_ics', 'aroma_noise_ics'), ('outputnode.melodic_mix', 'melodic_mix'), ('outputnode.nonaggr_denoised_file', 'nonaggr_denoised_file') ]), (join, outputnode, [('out_file', 'confounds')]), (ica_aroma_wf, func_reports_wf, [('outputnode.out_report', 'inputnode.ica_aroma_report')]), ]) # SURFACES ################################################################################## if freesurfer and any(space.startswith('fs') for space in output_spaces): LOGGER.log(25, 'Creating BOLD surface-sampling workflow.') bold_surf_wf = init_bold_surf_wf(mem_gb=mem_gb['resampled'], output_spaces=output_spaces, medial_surface_nan=medial_surface_nan, name='bold_surf_wf') workflow.connect([ (inputnode, bold_surf_wf, [('t1_preproc', 'inputnode.t1_preproc'), ('subjects_dir', 'inputnode.subjects_dir'), ('subject_id', 'inputnode.subject_id'), ('t1_2_fsnative_forward_transform', 'inputnode.t1_2_fsnative_forward_transform')]), (bold_reg_wf, bold_surf_wf, [('outputnode.bold_t1', 'inputnode.source_file')]), (bold_surf_wf, outputnode, [('outputnode.surfaces', 'surfaces')]), ]) # REPORTING ############################################################ bold_bold_report_wf = init_bold_preproc_report_wf( mem_gb=mem_gb['resampled'], reportlets_dir=reportlets_dir) workflow.connect([ (inputnode, bold_bold_report_wf, [('bold_file', 'inputnode.name_source'), ('bold_file', 'inputnode.in_pre')]), # This should be after STC (bold_bold_trans_wf, bold_bold_report_wf, [('outputnode.bold', 'inputnode.in_post')]), ]) return workflow