def test_load_real_metric(self, metric_name): with tempfile.TemporaryDirectory() as temp_data_dir: download_config = DownloadConfig() download_config.download_mode = GenerateMode.FORCE_REDOWNLOAD load_metric(metric_name, data_dir=temp_data_dir, download_config=download_config)
def test_load_real_dataset(self, dataset_name): with tempfile.TemporaryDirectory() as temp_data_dir: download_config = DownloadConfig() download_config.download_mode = GenerateMode.FORCE_REDOWNLOAD dataset = load_dataset(dataset_name, data_dir=temp_data_dir, download_config=download_config) for split in dataset.keys(): self.assertTrue(len(dataset[split]) > 0)
def test_load_real_dataset_local(self, dataset_name): with tempfile.TemporaryDirectory() as temp_data_dir: download_config = DownloadConfig() download_config.download_mode = GenerateMode.FORCE_REDOWNLOAD download_and_prepare_kwargs = {"download_config": download_config} dataset = load_dataset( "./datasets/" + dataset_name, data_dir=temp_data_dir, download_and_prepare_kwargs=download_and_prepare_kwargs, ) for split in dataset.keys(): self.assertTrue(len(dataset[split]) > 0)
def test_load_real_dataset(self, dataset_name): if "/" not in dataset_name: logging.info("Skip {} because it is a canonical dataset") return with tempfile.TemporaryDirectory() as temp_data_dir: download_config = DownloadConfig() download_config.download_mode = GenerateMode.FORCE_REDOWNLOAD download_and_prepare_kwargs = {"download_config": download_config} dataset = load_dataset( dataset_name, data_dir=temp_data_dir, download_and_prepare_kwargs=download_and_prepare_kwargs) for split in dataset.keys(): self.assertTrue(len(dataset[split]) > 0)