def load_model(path): """ Load an existing SequenceTagger model (with weights) from HDF5 file. :param path: String. The path to the pre-defined model. :return: NER. """ labor = chunker.SequenceTagger(use_cudnn=False) model = TextKerasModel._load_model(labor, path) model.__class__ = SequenceTagger return model
def __init__(self, num_pos_labels, num_chunk_labels, word_vocab_size, char_vocab_size=None, word_length=12, feature_size=100, dropout=0.2, classifier='softmax', optimizer=None): classifier = classifier.lower() assert classifier in ['softmax', 'crf' ], "classifier should be either softmax or crf" super(SequenceTagger, self).__init__(chunker.SequenceTagger(use_cudnn=False), vocabulary_size=word_vocab_size, num_pos_labels=num_pos_labels, num_chunk_labels=num_chunk_labels, char_vocab_size=char_vocab_size, max_word_len=word_length, feature_size=feature_size, dropout=dropout, classifier=classifier, optimizer=optimizer)
def load_model(path): labor = chunker.SequenceTagger(use_cudnn=False) model = TextKerasModel._load_model(labor, path) model.__class__ = SequenceTagger return model