コード例 #1
0
ファイル: base.py プロジェクト: percevalw/nlstruct
    def ensemble_with(self,
                      others,
                      ensemble_encoder_config=None,
                      ensemble_decoder_config=None,
                      decoder_kwargs={},
                      encoder_kwargs={}):
        config = get_config(self)
        if ensemble_decoder_config is None:
            ensemble_decoder_config = {"module": self.decoder.ENSEMBLE}
        elif isinstance(ensemble_decoder_config, str):
            ensemble_decoder_config = {"module": ensemble_decoder_config}

        if ensemble_encoder_config is None:
            ensemble_encoder_config = {"module": self.encoder.ENSEMBLE}
        elif isinstance(ensemble_encoder_config, str):
            ensemble_encoder_config = {"module": ensemble_encoder_config}

        config['preprocessor'] = self.preprocessor
        config['encoder'] = get_instance({
            **ensemble_encoder_config, "models":
            ([self.encoder, *(other.encoder for other in others)]),
            **encoder_kwargs
        }) if ensemble_encoder_config is not False else self.encoder
        config['decoder'] = get_instance({
            **ensemble_decoder_config, "models":
            ([self.decoder, *(other.decoder for other in others)]),
            **decoder_kwargs
        })
        return get_instance(config)
コード例 #2
0
ファイル: ner.py プロジェクト: percevalw/nlstruct
    def __init__(self, models, ensemble_span_scorer_module=None):
        super().__init__()

        self.contextualizers = torch.nn.ModuleList(
            [get_instance(m.contextualizer) for m in models])
        self.n_labels = models[0].n_labels
        self.filter_predictions = models[0].filter_predictions
        if ensemble_span_scorer_module is None:
            ensemble_span_scorer_module = models[0].span_scorer.ENSEMBLE
        self.span_scorer = get_instance({
            "module":
            ensemble_span_scorer_module,
            "models": [get_instance(m.span_scorer) for m in models]
        })
コード例 #3
0
ファイル: base.py プロジェクト: percevalw/nlstruct
 def init_modules(self):
     # Init modules that depend on the vocabulary
     with fork_rng(self.seed):
         with fork_rng(True):
             self.encoder = get_instance({
                 **self.encoder, "_preprocessor":
                 self.preprocessor
             }) if not isinstance(self.encoder,
                                  torch.nn.Module) else self.encoder
         with fork_rng(True):
             self.decoder = get_instance(
                 {
                     **self.decoder, "_preprocessor": self.preprocessor,
                     "_encoder": self.encoder
                 }) if not isinstance(self.decoder,
                                      torch.nn.Module) else self.decoder
コード例 #4
0
ファイル: base.py プロジェクト: percevalw/nlstruct
    def __init__(
        self,
        preprocessor,
        encoder,
        decoder,
        seed=42,
        data_seed=None,
        batch_size=24,
        fast_lr=1.5e-3,
        main_lr=1.5e-3,
        bert_lr=4e-5,
        gradient_clip_val=5.,
        metrics=None,
        warmup_rate=0.1,
        use_lr_schedules=True,
        dynamic_preprocessing=False,
        optimizer_cls=torch.optim.AdamW,
        _size_factor=20,
        _predict_kwargs={},
        additional_hparams={},
    ):
        """

        :param preprocessor: dict
            Preprocessor module parameters
        :param encoder: dict or list of dict
            Word encoders module parameters
        :param decoder: dict
            Decoder module parameters
        :param seed: int
            Seed for the model weights
        :param data_seed: int
            Seed for the data shuffling
        :param batch_size: int
            Batch size
        :param fast_lr: float
            Top modules parameters' learning rate, typically higher than other parameters learning rates
        :param main_lr: float
            Intermediate modules parameters' learning rate
        :param bert_lr: float
            BERT modules parameters' learning rate
        :param gradient_clip_val:
            Use gradient clipping
        :param warmup_rate: float
            Apply warmup for how much of the training (defaults to 0.1 = 10%)
        :param use_lr_schedules: bool
            Use learning rate schedules
        :param optimizer_cls: str or type
            Torch optimizer class to use
        """
        super().__init__()

        # monkey_patch()

        self.automatic_optimization = False
        if data_seed is None:
            data_seed = seed
        self.seed = seed
        self.data_seed = data_seed

        self.size_factor = _size_factor
        self.gradient_clip_val = gradient_clip_val
        self.fast_lr = fast_lr
        self.main_lr = main_lr
        self.bert_lr = bert_lr
        self.use_lr_schedules = use_lr_schedules
        self.warmup_rate = warmup_rate
        self.batch_size = batch_size
        self.optimizer_cls = getattr(
            import_module(optimizer_cls.rsplit(".", 1)[0]),
            optimizer_cls.rsplit(".", 1)[1]) if isinstance(
                optimizer_cls, str) else optimizer_cls

        self.dynamic_preprocessing = dynamic_preprocessing
        self.preprocessor = get_instance(preprocessor)
        self.additional_hparams = additional_hparams

        if metrics is None:
            metrics = {
                "exact":
                dict(module="dem",
                     binarize_tag_threshold=1.,
                     binarize_label_threshold=1.),
                "approx":
                dict(module="dem",
                     binarize_tag_threshold=False,
                     binarize_label_threshold=1.),
            }
        self.metrics = MetricsCollection(
            {k: get_instance(m)
             for k, m in metrics.items()})

        # Init postponed to setup
        self.encoder = encoder
        self.decoder = decoder

        if not any(voc.training
                   for voc in self.preprocessor.vocabularies.values()):
            self.init_modules()
        self._time = time.time()
        self._predict_kwargs = _predict_kwargs
コード例 #5
0
ファイル: base.py プロジェクト: percevalw/nlstruct
def load_pretrained(path, map_location=None):
    loaded = torch.load(path, map_location=map_location)
    instance = get_instance(loaded["config"])
    instance.load_state_dict(loaded["state_dict"], strict=False)
    instance.eval()
    return instance
コード例 #6
0
    def __init__(self, models):
        super().__init__()

        self.models = torch.nn.ModuleList([get_instance(e) for e in models])
        self._output_size = models[0].output_size