def test_set_uniform_translation_probabilities_of_non_domain_values(self): # arrange corpus = [ AlignedSent(["ham", "eggs"], ["schinken", "schinken", "eier"]), AlignedSent(["spam", "spam", "spam", "spam"], ["spam", "spam"]), ] model1 = IBMModel1(corpus, 0) # act model1.set_uniform_probabilities(corpus) # assert # examine target words that are not in the training data domain self.assertEqual(model1.translation_table["parrot"]["eier"], IBMModel.MIN_PROB)
def test_set_uniform_translation_probabilities(self): # arrange corpus = [ AlignedSent(['ham', 'eggs'], ['schinken', 'schinken', 'eier']), AlignedSent(['spam', 'spam', 'spam', 'spam'], ['spam', 'spam']), ] model1 = IBMModel1(corpus, 0) # act model1.set_uniform_probabilities(corpus) # assert # expected_prob = 1.0 / (target vocab size + 1) self.assertEqual(model1.translation_table['ham']['eier'], 1.0 / 3) self.assertEqual(model1.translation_table['eggs'][None], 1.0 / 3)
def test_set_uniform_translation_probabilities_of_non_domain_values(self): # arrange corpus = [ AlignedSent(['ham', 'eggs'], ['schinken', 'schinken', 'eier']), AlignedSent(['spam', 'spam', 'spam', 'spam'], ['spam', 'spam']), ] model1 = IBMModel1(corpus, 0) # act model1.set_uniform_probabilities(corpus) # assert # examine target words that are not in the training data domain self.assertEqual(model1.translation_table['parrot']['eier'], IBMModel.MIN_PROB)
def test_set_uniform_translation_probabilities(self): # arrange corpus = [ AlignedSent(["ham", "eggs"], ["schinken", "schinken", "eier"]), AlignedSent(["spam", "spam", "spam", "spam"], ["spam", "spam"]), ] model1 = IBMModel1(corpus, 0) # act model1.set_uniform_probabilities(corpus) # assert # expected_prob = 1.0 / (target vocab size + 1) self.assertEqual(model1.translation_table["ham"]["eier"], 1.0 / 3) self.assertEqual(model1.translation_table["eggs"][None], 1.0 / 3)
def task_2(path, alignments_pred): """ Task 2: Comparing our alignment results with that of NLTK library's output of IBM Model 1 and IBM Model 2 :param path: path for data :param alignments_pred: alignments computed in task 1 :return: parallel_corpus, phrase_extraction_corpus_en, phrase_extraction_corpus_fr """ parallel_corpus = [] phrase_extraction_corpus_en = [] phrase_extraction_corpus_fr = [] with open(path, 'r') as f: d = json.load(f) for sent in d: phrase_extraction_corpus_en.append(sent['en']) phrase_extraction_corpus_fr.append(sent['fr']) fr_words = sent['fr'].split() en_words = sent['en'].split() parallel_corpus.append(AlignedSent(en_words, fr_words)) # MODEL - 2 print("******IBM Model-2*******") ibm2 = IBMModel2(parallel_corpus, 50) for test in parallel_corpus: print("en_sentence: {}".format(test.words)) print("fr_sentence: {}".format(test.mots)) try: print("nltk alignment: {}".format(test.alignment)) except: print("nltk ibm model 2 alignment failed") # MODEL-1 ibm1 = IBMModel1(parallel_corpus, 50) print("******IBM Model 1*******") for test in parallel_corpus: print("en_sentence: {}".format(test.words)) print("fr_sentence: {}".format(test.mots)) try: print("nltk alignment: {}".format(test.alignment)) except: print("nltk ibm model 1 alignment failed") str_test = ' '.join(word for word in test.words) print("predicted alignment: {}\n".format(alignemnts_pred[str_test])) return parallel_corpus, phrase_extraction_corpus_en, phrase_extraction_corpus_fr
def __init__(self, sentence_aligned_corpus, output_file, iterations): """ Train on ``sentence_aligned_corpus`` and create a lexical translation model and an alignment model. Translation direction is from ``AlignedSent.mots`` to ``AlignedSent.words``. Runs a few iterations of Model 1 training to initialize model parameters. :param sentence_aligned_corpus: Sentence-aligned parallel corpus :type sentence_aligned_corpus: list(AlignedSent) :param iterations: Number of iterations to run training algorithm :type iterations: int """ print "initializing model2..." super(IBMModel2, self).__init__(sentence_aligned_corpus) # Get initial translation probability distribution # from a few iterations of Model 1 training. print "start training model1..." ibm1 = IBMModel1(sentence_aligned_corpus, 10) print "finished training model1..." self.translation_table = ibm1.translation_table # Initialize the distribution of alignment probability, # a(i | j,l,m) = 1 / (l+1) for all i, j, l, m for aligned_sentence in sentence_aligned_corpus: l = len(aligned_sentence.mots) m = len(aligned_sentence.words) initial_value = 1 / (l + 1) if initial_value > IBMModel.MIN_PROB: for i in range(0, l + 1): for j in range(1, m + 1): self.alignment_table[i][j][l][m] = initial_value else: warnings.warn("Source sentence is too long (" + str(l) + " words). Results may be less accurate.") self.train(sentence_aligned_corpus, iterations) self.output_file = output_file print "output_file: ", self.output_file self.__align_all(sentence_aligned_corpus)
def __init__(self, sentence_aligned_corpus, iterations, probability_tables=None): """ Train on ``sentence_aligned_corpus`` and create a lexical translation model and an alignment model. Translation direction is from ``AlignedSent.mots`` to ``AlignedSent.words``. :param sentence_aligned_corpus: Sentence-aligned parallel corpus :type sentence_aligned_corpus: list(AlignedSent) :param iterations: Number of iterations to run training algorithm :type iterations: int :param probability_tables: Optional. Use this to pass in custom probability values. If not specified, probabilities will be set to a uniform distribution, or some other sensible value. If specified, all the following entries must be present: ``translation_table``, ``alignment_table``. See ``IBMModel`` for the type and purpose of these tables. :type probability_tables: dict[str]: object """ super().__init__(sentence_aligned_corpus) if probability_tables is None: # Get translation probabilities from IBM Model 1 # Run more iterations of training for Model 1, since it is # faster than Model 2 ibm1 = IBMModel1(sentence_aligned_corpus, 2 * iterations) self.translation_table = ibm1.translation_table self.set_uniform_probabilities(sentence_aligned_corpus) else: # Set user-defined probabilities self.translation_table = probability_tables["translation_table"] self.alignment_table = probability_tables["alignment_table"] for n in range(0, iterations): self.train(sentence_aligned_corpus) self.align_all(sentence_aligned_corpus)
def IBM_Model_1(corpus): bitext = [] for x in corpus: bitext.append( AlignedSent(x[SOURCE_LANGUAGE].split(), x[DESTINATION_LANGUAGE].split())) print("IBM MODEL 1 :") print("") #calling the inbuilt IBM Model 1 function ibm1 = IBMModel1(bitext, NUMBER_OF_ITERATIONS) for test in bitext: print("Source sentence:") print(test.words) print("Destination sentence:") print(test.mots) print("Alignment:") print(test.alignment) print("") print("----------------------------------------") return ibm1.translation_table, bitext
from nltk.translate import IBMModel1, AlignedSent import numpy as np bitext = [] bitext.append(AlignedSent(['klein', 'ist', 'das', 'haus'], ['the', 'house', 'is', 'small'])) bitext.append(AlignedSent(['das', 'haus', 'ist', 'ja', 'groß'], ['the', 'house', 'is', 'big'])) bitext.append(AlignedSent(['das', 'buch', 'ist', 'ja', 'klein'], ['the', 'book', 'is', 'small'])) bitext.append(AlignedSent(['das', 'haus'], ['the', 'house'])) bitext.append(AlignedSent(['das', 'buch'], ['the', 'book'])) bitext.append(AlignedSent(['ein', 'buch'], ['a', 'book'])) ibm1 = IBMModel1(bitext, 5) print(ibm1.translation_table['buch']['book'])
def compare_ibm_1_nltk(t, max_steps, src, tar): print('Compare my IBM Model 1 to nltk library:') aligned = test_sets_to_aligned(src, tar) ibm1 = IBMModel1(aligned, max_steps) compare_t_table(ibm1, t)
with open('ibm_part1.pkl', 'rb') as file: ibm_part1 = pickle.load(file) print('Loading ibm model 2') with open('ibm_part2.pkl', 'rb') as file: ibm_part2 = pickle.load(file) print('Loading ibm model 3') with open('ibm_part3.pkl', 'rb') as file: ibm_part3 = pickle.load(file) # with open('ibm_part4.pkl', 'rb') as file: # ibm_part4 = pickle.load(file) # with open('ibm_part5.pkl', 'rb') as file: # ibm_part5 = pickle.load(file) else: #bitext = bitext_part1+bitext_part2+bitext_part3#+bitext_part4+bitext_part5 print('Creating ibm part 1') ibm_part1 = IBMModel1(bitext_part1, 5) with open('ibm_part1.pkl', 'wb') as file: pickle.dump(ibm_part1, file) print('Creating ibm part 2') ibm_part2 = IBMModel1(bitext_part2, 5) with open('ibm_part2.pkl', 'wb') as file: pickle.dump(ibm_part2, file) print('Creating ibm part 3') ibm_part3 = IBMModel1(bitext_part3, 5) with open('ibm_part3.pkl', 'wb') as file: pickle.dump(ibm_part3, file) print('Creating ibm part 4') ibm_part4 = IBMModel1(bitext_part4, 5)
# Structures: 1-paragraph alignment only, 2-sentence alignment based on paragraphs, 3-direct sentence alignment structures = {1: "para", 2: "psent", 3: "sent"} struct_num = 1 for i in range(1, 44): en_path = 'translation-dashboard/data/en-ba-' + structures[ struct_num] + '-align/en-chapter-' + str(i) + '.txt' ba_path = 'translation-dashboard/data/en-ba-' + structures[ struct_num] + '-align/ba-chapter-' + str(i) + '.txt' aligned_paras.extend(para_as_sent(en_path, ba_path)) wc += word_count(en_path) # print (wc.freq("i")) num_iterations = 20 start = timer() model = IBMModel1(aligned_paras, num_iterations) end = timer() timeelapsed = end - start # timer will only evaluate time taken to run IBM Models with open('align_models/ibm-model-runtimes.csv', 'a', encoding='utf-8') as output_file: output_writer = csv.writer(output_file, delimiter='\t') output_writer.writerow([ "1", str(num_iterations), timeelapsed, socket.gethostname(), 'struct' + str(struct_num) ]) output_file.close() # Save model and word count with open('align_models/ibm1.model', 'wb') as m_file:
print(" ") # In[266]: #TRAINING IBM MODEL 1 from collections import defaultdict from nltk.translate import AlignedSent from nltk.translate import Alignment from nltk.translate import IBMModel, IBMModel1, IBMModel2 from nltk.translate.ibm_model import Counts #bitext will have the parallel corpus bitext = [] for i in range(len(fr)): bitext.append(AlignedSent(en[i], fr[i])) #Training for 100 iterations ibm1 = IBMModel1(bitext, 1000) #trans_dict will contain the translation probabilities for each distinct pair of words #pair being of the form (english_word,french_word) trans_dict = ibm1.translation_table # In[267]: #ALIGNMENTS OF IBM MODEL 1 print("IBM MODEL 1") for i in range(len(fr)): test_sentence = bitext[i] align_ibm = test_sentence.alignment #print(test_sentence) print(align_ibm) #print(" ")
def generateModels(qtype): # dictionary, pwC, pdf = prepare_corpus("data/linkSO",recompute=False) datadir = "data/linkSO" all_questions = pd.read_csv(join(datadir, "linkso/topublish/" + qtype + "/" + qtype + "_qid2all.txt"), sep='\t', \ names=['qID', 'qHeader', 'qDescription', 'topVotedAnswer', 'type']) similar_docs_file = pd.read_csv(join(datadir, "linkso/topublish/" + qtype + "/" + qtype + "_cosidf.txt"), sep='\t', \ names=['qID1', 'qID2', 'score', 'label'], skiprows=1) filtered_rows = similar_docs_file[similar_docs_file[label] == 1] filtered_columns = filtered_rows.filter(items=[question_id1, question_id2]) bitext_qH_qH = [] bitext_qD_qD = [] bitext_qHqD_qHqD = [] loop_counter = 0 for each_row in filtered_columns.itertuples(): q1ID = each_row[1] q2ID = each_row[2] q1_row = all_questions.loc[all_questions[question_id] == q1ID] q1header = str(q1_row[question_header].values[0]).split() q1desc = str(q1_row[question_description].values[0]).split() q1ans = str(q1_row[top_answer].values[0]).split() q2_row = all_questions.loc[all_questions[question_id] == q2ID] q2header = str(q2_row[question_header].values[0]).split() q2desc = str(q2_row[question_description].values[0]).split() q2ans = str(q2_row[top_answer].values[0]).split() # print("\nQ1 Header:", q1header) # print("Q1 Desc:", q1desc) # print("Q1 Answer:", q1ans) # print("Q2:", q2header) # print("Q2 Desc:", q2desc) # print("Q2 Answer:", q2ans) bitext_qH_qH.append(AlignedSent(q1header, q2header)) bitext_qD_qD.append(AlignedSent(q1desc, q2desc)) bitext_qHqD_qHqD.append(AlignedSent(q1header + q1desc, q2header + q2desc)) loop_counter += 1 # Model 1 print("Training Model1 QH QH..") start = time.time() ibmQH = IBMModel1(bitext_qH_qH, 50) print("Model QH QH trained.. In", time.time() - start, " seconds..") with open('modelQHQH_Model1_' + qtype + '.pk', 'wb') as fout: pickle.dump(ibmQH, fout) print("Training Model1 QD QD..") start = time.time() ibmQD = IBMModel1(bitext_qD_qD, 50) print("Model QD QD trained.. In", time.time() - start, " seconds..") with open('modelQDQD_Model1_' + qtype + '.pk', 'wb') as fout: pickle.dump(ibmQD, fout) print("Training Model1 QHQD QHQD..") start = time.time() ibmQHQD = IBMModel1(bitext_qHqD_qHqD, 50) print("Model QH QH trained.. In", time.time() - start, " seconds..") with open('modelQHQD_Model1_' + qtype + '.pk', 'wb') as fout: pickle.dump(ibmQHQD, fout) print(round(ibmQH.translation_table['html']['web'], 10)) print(round(ibmQD.translation_table['html']['web'], 10)) print(round(ibmQHQD.translation_table['html']['web'], 10)) # Model 2 print("Training Model2 QH QH..") start = time.time() ibmQH = IBMModel2(bitext_qH_qH, 50) print("Model QH QH trained.. In", time.time() - start, " seconds..") with open('modelQHQH_Model2_' + qtype + '.pk', 'wb') as fout: pickle.dump(ibmQH, fout) print("Training Model2 QD QD..") start = time.time() ibmQD = IBMModel2(bitext_qD_qD, 50) print("Model QD QD trained.. In", time.time() - start, " seconds..") with open('modelQDQD_Model2_' + qtype + '.pk', 'wb') as fout: pickle.dump(ibmQD, fout) print("Training Model2 QHQD QHQD..") start = time.time() ibmQHQD = IBMModel2(bitext_qHqD_qHqD, 50) print("Model QH QH trained.. In", time.time() - start, " seconds..") with open('modelQHQD_Model2_' + qtype + '.pk', 'wb') as fout: pickle.dump(ibmQHQD, fout) print(round(ibmQH.translation_table['html']['web'], 10)) print(round(ibmQD.translation_table['html']['web'], 10)) print(round(ibmQHQD.translation_table['html']['web'], 10)) # Model 3 print("Training Model3 QH QH..") start = time.time() ibmQH = IBMModel3(bitext_qH_qH, 50) print("Model QH QH trained.. In", time.time() - start, " seconds..") with open('modelQHQH_Model3_' + qtype + '.pk', 'wb') as fout: pickle.dump(ibmQH, fout) print("Training Model3 QD QD..") start = time.time() ibmQD = IBMModel3(bitext_qD_qD, 50) print("Model QD QD trained.. In", time.time() - start, " seconds..") with open('modelQDQD_Model3_' + qtype + '.pk', 'wb') as fout: pickle.dump(ibmQD, fout) print("Training Model3 QHQD QHQD..") start = time.time() ibmQHQD = IBMModel3(bitext_qHqD_qHqD, 50) print("Model QH QH trained.. In", time.time() - start, " seconds..") with open('modelQHQD_Model3_' + qtype + '.pk', 'wb') as fout: pickle.dump(ibmQHQD, fout) print(round(ibmQH.translation_table['html']['web'], 10)) print(round(ibmQD.translation_table['html']['web'], 10)) print(round(ibmQHQD.translation_table['html']['web'], 10)) # Model 4 print("Training Model4 QH QH..") start = time.time() ibmQH = IBMModel4(bitext_qH_qH, 50) print("Model QH QH trained.. In", time.time() - start, " seconds..") with open('modelQHQH_Model4_' + qtype + '.pk', 'wb') as fout: pickle.dump(ibmQH, fout) print("Training Model4 QD QD..") start = time.time() ibmQD = IBMModel4(bitext_qD_qD, 50) print("Model QD QD trained.. In", time.time() - start, " seconds..") with open('modelQDQD_Model4_' + qtype + '.pk', 'wb') as fout: pickle.dump(ibmQD, fout) print("Training Model4 QHQD QHQD..") start = time.time() ibmQHQD = IBMModel4(bitext_qHqD_qHqD, 50) print("Model QH QH trained.. In", time.time() - start, " seconds..") with open('modelQHQD_Model4_' + qtype + '.pk', 'wb') as fout: pickle.dump(ibmQHQD, fout) print(round(ibmQH.translation_table['html']['web'], 10)) print(round(ibmQD.translation_table['html']['web'], 10)) print(round(ibmQHQD.translation_table['html']['web'], 10)) # Model5 print("Training Model5 QH QH..") start = time.time() ibmQH = IBMModel5(bitext_qH_qH, 50) print("Model QH QH trained.. In", time.time() - start, " seconds..") with open('modelQHQH_Model5_' + qtype + '.pk', 'wb') as fout: pickle.dump(ibmQH, fout) print("Training Model5 QD QD..") start = time.time() ibmQD = IBMModel5(bitext_qD_qD, 50) print("Model QD QD trained.. In", time.time() - start, " seconds..") with open('modelQDQD_Model5_' + qtype + '.pk', 'wb') as fout: pickle.dump(ibmQD, fout) print("Training Model5 QHQD QHQD..") start = time.time() ibmQHQD = IBMModel5(bitext_qHqD_qHqD, 50) print("Model QH QH trained.. In", time.time() - start, " seconds..") with open('modelQHQD_Model5_' + qtype + '.pk', 'wb') as fout: pickle.dump(ibmQHQD, fout) print(round(ibmQH.translation_table['html']['web'], 10)) print(round(ibmQD.translation_table['html']['web'], 10)) print(round(ibmQHQD.translation_table['html']['web'], 10))
def main(src_path,tgt_path): srcs=[] tgts=[] with open(src_path) as f: for s in f: srcs.append(s.split()) with open(tgt_path) as f: for t in f: tgts.append(t.split()) assert len(srcs)==len(tgts) bitexts_s2t = [] bitexts_t2s = [] for s,t in zip(srcs,tgts): bitexts_s2t.append(AlignedSent(t, s)) bitexts_t2s.append(AlignedSent(s,t)) ibm1_s2t = IBMModel1(bitexts_s2t,5) ibm1_t2s = IBMModel1(bitexts_t2s,5) p_s_given_t =0 p_t_given_s =0 Ds=defaultdict(list) Dt=defaultdict(list) Dlen=defaultdict(list) Dscore=defaultdict(list) for key in ibm1_t2s.translation_table.keys(): #print("sum t[t|*]=>",sum(ibm1_t2s.translation_table[key].values())) for key_s in ibm1_t2s.translation_table[key].keys(): Ds[key_s].append(ibm1_t2s.translation_table[key][key_s]) for key in Ds.keys(): #print("sum P(*|s)=>",sum(Ds[key])) pass for key in Ds.keys(): if key is None: continue Dlen[len(key)].append(len(Ds[key])) Dscore[len(key)].extend(Ds[key]) for key in sorted(Dlen.keys(),key=lambda x:int(x)): #print("Dlen=>",key,sum(Dlen[key])/len(Dlen[key])) #print("Dscore=>",key,sum(Dscore[key])/len(Dscore[key])) pass for b in bitexts_t2s: tgt,src,align = b.words,b.mots,b.alignment for (idx_tgt, idx_src) in align: if idx_src is None: continue #print("t:{}->s:{}".format(tgt[idx_tgt],src[idx_src])) p_t_given_s += log(ibm1_t2s.translation_table[tgt[idx_tgt]][src[idx_src]]) for b in bitexts_s2t: src,tgt,align = b.words,b.mots,b.alignment for (idx_src, idx_tgt) in align: if idx_tgt is None: continue p_s_given_t += log(ibm1_s2t.translation_table[src[idx_src]][tgt[idx_tgt]]) p_s_given_t=p_s_given_t/sum([len(v) for v in tgts]) p_t_given_s=p_t_given_s/sum([len(v) for v in srcs]) print("log P(s|t)=> {}\nlog P(t|s)=>{}".format(p_s_given_t,p_t_given_s))