コード例 #1
0
def load_ace_file(textfile, fmt):
    print '  - %s' % os.path.split(textfile)[1]
    annfile = textfile+'.tmx.rdc.xml'

    # Read the xml file, and get a list of entities
    entities = []
    xml = ET.parse(open(annfile)).getroot()
    for entity in xml.findall('document/entity'):
        typ = entity.find('entity_type').text
        for mention in entity.findall('entity_mention'):
            if mention.get('TYPE') != 'NAME': continue # only NEs
            s = int(mention.find('head/charseq/start').text)
            e = int(mention.find('head/charseq/end').text)+1
            entities.append( (s, e, typ) )

    # Read the text file, and mark the entities.
    text = open(textfile).read()
    
    # Strip XML tags, since they don't count towards the indices
    text = re.sub('<(?!/?TEXT)[^>]+>', '', text)

    # Blank out anything before/after <TEXT>
    def subfunc(m): return ' '*(m.end()-m.start()-6)
    text = re.sub('[\s\S]*<TEXT>', subfunc, text)
    text = re.sub('</TEXT>[\s\S]*', '', text)

    # Simplify quotes
    text = re.sub("``", ' "', text)
    text = re.sub("''", '" ', text)

    entity_types = set(typ for (s,e,typ) in entities)

    # Binary distinction (NE or not NE)
    if fmt == 'binary':
        i = 0
        toks = nltk.Tree('S', [])
        for (s,e,typ) in sorted(entities):
            if s < i: s = i # Overlapping!  Deal with this better?
            if e <= s: continue
            toks.extend(nltk.word_tokenize(text[i:s]))
            toks.append(nltk.Tree('NE', text[s:e].split()))
            i = e
        toks.extend(nltk.word_tokenize(text[i:]))
        yield toks

    # Multiclass distinction (NE type)
    elif fmt == 'multiclass':
        i = 0
        toks = nltk.Tree('S', [])
        for (s,e,typ) in sorted(entities):
            if s < i: s = i # Overlapping!  Deal with this better?
            if e <= s: continue
            toks.extend(nltk.word_tokenize(text[i:s]))
            toks.append(nltk.Tree(typ, text[s:e].split()))
            i = e
        toks.extend(nltk.word_tokenize(text[i:]))
        yield toks

    else:
        raise ValueError('bad fmt value')
コード例 #2
0
def build_sentence_tree(tagged_sentence):
    """Builds the sentence tree based on the IOB tags for person and date"""
    phrase = []
    label = ""
    token_list = []
    for token in tagged_sentence:
        iob = token[2]
        word = token[:-1]
        if (iob == 'O'):
            if (phrase != []):
                token_list.append(nltk.Tree(label, phrase))
                label = ""
                phrase = []
                token_list.append(word)
            else:
                token_list.append(word)
        else:
            if (iob[2:] in ["PERSON", "DATE"]):
                if (label == iob[2:] or label == ""):
                    label = iob[2:]
                    phrase.append(word)
                else:
                    token_list.append(nltk.Tree(label, phrase))
                    label = ""
                    phrase = []
                    phrase.append(word)

    if (phrase != []):
        token_list.append(nltk.Tree(label, phrase))

    return token_list
コード例 #3
0
def test_chunk_tagger():
    """
        Test Chunk tagger.
    """

    from nltk.tokenize import word_tokenize

    logging.info('Loading PoS tagger')
    pos_tag = pickle.load(open("tmp/pos_tagger.p", "rb")).tag
    logging.info('Loading Chunk tagger')
    chunk_tag = pickle.load(open("tmp/chunk_tagger.p", "rb")).parse
    loc = nltk.Tree('LOC', [(u'santander', u'NC')])
    org = nltk.Tree('ORG', [(u'izquierda', u'NC')])

    test_tree = nltk.Tree('S', [
        org, (u'unida', u'AQ'), (u'de', u'SP'), loc,
        (unicode('presentó', 'utf-8'), u'VMI'),
        (u'hoy', u'RG'), (u'su', u'DP'), (u'nuevo', u'AQ'),
        (unicode('boletín', 'utf-8'), u'NC'), (u'trimestral', u'AQ')
    ])

    string = unicode(
        """Izquierda Unida de Santander presentó hoy su nuevo boletín\
 trimestral""", 'utf-8')
    tokens = [token.lower() for token in word_tokenize(string)]
    pos_tokens = pos_tag(tokens)
    result = chunk_tag(pos_tokens)

    assert result == test_tree
コード例 #4
0
ファイル: summarizer.py プロジェクト: JiadaoZ22/NLP
def construct_dependency_tree(parsed):
    """Constructs a dependency tree from a list of dependency triplets of the 
    form (relationship, governing word, dependent word)"""

    root = parsed.dependencies_root
    dependencies = set([(rel, gov.text, dep.text)
                        for rel, gov, dep in parsed.dependencies])
    children = [(rel, gov, dep) for (rel, gov, dep) in dependencies
                if gov == root]
    dependencies = dependencies - set(children)

    remaining_nodes = [nltk.Tree(dep, []) for (rel, gov, dep) in children]
    tree = nltk.Tree(root, remaining_nodes)

    while dependencies != set():
        #find current node and its children
        node = remaining_nodes.pop(0)
        children = [(rel, gov, dep) for (rel, gov, dep) in dependencies
                    if gov == node.node]
        children_nodes = [nltk.Tree(dep, []) for (rel, gov, dep) in children]

        #update counting structures
        remaining_nodes.extend(children_nodes)
        node.extend(children_nodes)
        dependencies = dependencies - set(children)
    return tree
コード例 #5
0
ファイル: scratch_spmrl.py プロジェクト: tchewik/isanlp_rst
def binarize(tree,
             binarize_direction='left',
             dummy_label_manipulating='parent'):
    assert binarize_direction in [
        'left', 'right'
    ], f"We only support left/right direction here"
    assert dummy_label_manipulating in [
        'parent', 'universal', 'universal_node_unary'
    ], f"We only support parent/universal direction here"
    tree = tree.copy(True)
    nodes = [tree]
    while nodes:
        node = nodes.pop()
        if isinstance(node, nltk.Tree):
            nodes.extend([child for child in node])
            if len(node) > 1:
                for i, child in enumerate(node):
                    if not isinstance(child[0], nltk.Tree):
                        if dummy_label_manipulating == 'parent':
                            node[i] = nltk.Tree(f"{node.label()}|<>", [child])
                        elif dummy_label_manipulating == 'universal':
                            node[i] = nltk.Tree(f"|<>", [child])
                        elif dummy_label_manipulating == 'universal_node_unary':
                            node[i] = nltk.Tree(f"UNARY|<>", [child])
    tree = custom_chomsky_normal_form(tree, binarize_direction,
                                      dummy_label_manipulating, 0, 0)
    tree.collapse_unary()
    return tree
コード例 #6
0
def visual_tree(node):
    """
    :param node: the root node.
    """
    if node.child2 is None:
        return nltk.Tree(node.parent, [node.child1])
    return nltk.Tree(node.parent, [visual_tree(node.child1), visual_tree(node.child2)])
コード例 #7
0
 def list2tree(node):
     if isinstance(node, list):
         tree = []
         for child in node:
             tree.append(list2tree(child))
         return nltk.Tree('<unk>', tree)
     elif isinstance(node, str):
         return nltk.Tree('<word>', [node])
コード例 #8
0
def sent2tree(node):
    trees = [sent2tree(i) for i in node]
    if node.tag == "tok":
        return nltk.Tree(node.attrib["cat"], [node.text])
    elif node.tag == "cons":
        return nltk.Tree(node.attrib["cat"], trees)
    else:
        return sent2tree(node[0])
コード例 #9
0
def list2tree(node):
  """convert list instance to nltk.Tree."""
  if isinstance(node, list):
    tree = []
    for child in node:
      tree.append(list2tree(child))
    return nltk.Tree('<l>', tree)
  elif isinstance(node, dict):
    return nltk.Tree(node['tag'], [node['word']])
コード例 #10
0
def build_nltktree(depth,
                   arc,
                   tag,
                   sen,
                   arcdict,
                   tagdict,
                   stagdict,
                   stags=None):
    """stags are the stanford predicted tags present in the train/valid/test files.
    """
    assert len(sen) > 0
    assert len(depth) == len(sen) - 1, ("%s_%s" % (len(depth), len(sen)))
    if stags:
        assert len(stags) == len(tag)

    if len(sen) == 1:
        tag_list = str(tagdict[tag[0]]).split('+')
        tag_list.reverse()
        # if stags, put the real stanford pos TAG for the word and leave the
        # unary chain on top.
        if stags is not None:
            assert len(stags) > 0
            tag_list.insert(0, str(stagdict[stags[0]]))
        word = str(sen[0])
        for t in tag_list:
            word = nltk.Tree(t, [word])
        assert isinstance(word, nltk.Tree)
        return word
    else:
        idx = numpy.argmax(depth)
        node0 = build_nltktree(depth[:idx], arc[:idx], tag[:idx + 1],
                               sen[:idx + 1], arcdict, tagdict, stagdict,
                               stags[:idx + 1] if stags else None)
        node1 = build_nltktree(depth[idx + 1:], arc[idx + 1:], tag[idx + 1:],
                               sen[idx + 1:], arcdict, tagdict, stagdict,
                               stags[idx + 1:] if stags else None)

        if node0.label() != '<empty>' and node1.label() != '<empty>':
            tr = [node0, node1]
        elif node0.label() == '<empty>' and node1.label() != '<empty>':
            tr = [c for c in node0] + [node1]
        elif node0.label() != '<empty>' and node1.label() == '<empty>':
            tr = [node0] + [c for c in node1]
        elif node0.label() == '<empty>' and node1.label() == '<empty>':
            tr = [c for c in node0] + [c for c in node1]

        arc_list = str(arcdict[arc[idx]]).split('+')
        arc_list.reverse()
        for a in arc_list:
            if isinstance(tr, nltk.Tree):
                tr = [tr]
            tr = nltk.Tree(a, tr)

        return tr
コード例 #11
0
ファイル: transform.py プロジェクト: attardi/parser
    def binarize(cls, tree):
        r"""
        Conducts binarization over the tree.

        First, the tree is transformed to satisfy `Chomsky Normal Form (CNF)`_.
        Here we call :meth:`~nltk.tree.Tree.chomsky_normal_form` to conduct left-binarization.
        Second, all unary productions in the tree are collapsed.

        Args:
            tree (nltk.tree.Tree):
                The tree to be binarized.

        Returns:
            The binarized tree.

        Examples:
            >>> tree = nltk.Tree.fromstring('''
                                            (TOP
                                              (S
                                                (NP (_ She))
                                                (VP (_ enjoys) (S (VP (_ playing) (NP (_ tennis)))))
                                                (_ .)))
                                            ''')
            >>> print(Tree.binarize(tree))
            (TOP
              (S
                (S|<>
                  (NP (_ She))
                  (VP
                    (VP|<> (_ enjoys))
                    (S::VP (VP|<> (_ playing)) (NP (_ tennis)))))
                (S|<> (_ .))))

        .. _Chomsky Normal Form (CNF):
            https://en.wikipedia.org/wiki/Chomsky_normal_form
        """

        tree = tree.copy(True)
        if len(tree) == 1 and not isinstance(tree[0][0], nltk.Tree):
            tree[0] = nltk.Tree(f"{tree.label()}|<>", [tree[0]])
        nodes = [tree]
        while nodes:
            node = nodes.pop()
            if isinstance(node, nltk.Tree):
                nodes.extend([child for child in node])
                if len(node) > 1:
                    for i, child in enumerate(node):
                        if not isinstance(child[0], nltk.Tree):
                            node[i] = nltk.Tree(f"{node.label()}|<>", [child])
        tree.chomsky_normal_form('left', 0, 0)
        tree.collapse_unary(joinChar='::')

        return tree
コード例 #12
0
 def track(node):
     i, j, label = next(node)
     if j == i + 1:
         children = [leaves[i]]
     else:
         children = track(node) + track(node)
     if label.endswith('|<>'):
         return children
     labels = label.split('+')
     tree = nltk.Tree(labels[-1], children)
     for label in reversed(labels[:-1]):
         tree = nltk.Tree(label, [tree])
     return [tree]
コード例 #13
0
    def to_tree(self,
                leaves,
                label_from_index: dict,
                tag_from_index: dict = None):
        if self.tags is not None:
            if tag_from_index is None:
                raise ValueError(
                    "tags_from_index is required to convert predicted pos tags"
                )
            predicted_tags = [tag_from_index[i] for i in self.tags]
            assert len(leaves) == len(predicted_tags)
            leaves = [
                nltk.Tree(tag, [leaf[0] if isinstance(leaf, tuple) else leaf])
                for tag, leaf in zip(predicted_tags, leaves)
            ]
        else:
            leaves = [
                nltk.Tree(leaf[1], [leaf[0]]) if isinstance(leaf, tuple) else
                (nltk.Tree("UNK", [leaf]) if isinstance(leaf, str) else leaf)
                for leaf in leaves
            ]

        idx = -1

        def helper():
            nonlocal idx
            idx += 1
            i, j, label = (
                self.starts[idx],
                self.ends[idx],
                label_from_index[self.labels[idx]],
            )
            if (i + 1) >= j:
                children = [leaves[i]]
            else:
                children = []
                while ((idx + 1) < len(self.starts)
                       and i <= self.starts[idx + 1]
                       and self.ends[idx + 1] <= j):
                    children.extend(helper())

            if label:
                for sublabel in reversed(label.split("::")):
                    children = [nltk.Tree(sublabel, children)]

            return children

        children = helper()
        return nltk.Tree("TOP", children)
コード例 #14
0
ファイル: tiger.py プロジェクト: Python3pkg/Confopy
 def _conv_etree2tree(self, node, nodes, label="", include_edgelabels=True):
     if type(node) == _Terminal:
         pos = node.pos
         if include_edgelabels and label not in ["", "--"]:
             pos = pos + "-" + label
         return nltk.Tree(pos, [node.word])
     elif type(node) == _NonTerminal:
         cat = node.cat
         children = list()
         for e in node.edges:
             children.append(
                 self._conv_etree2tree(nodes.get(e[1]), nodes, e[0],
                                       include_edgelabels))
         return nltk.Tree(cat, children)
     return None
def convert_to_revised_tokenization(orig_trees, revised_trees):
    for orig_tree, revised_tree in zip(orig_trees, revised_trees):
        orig_words = [standardize_form(word) for word in orig_tree.leaves()]
        revised_words = [
            standardize_form(word) for word in revised_tree.leaves()
        ]
        o2r, r2o = tokenizations.get_alignments(orig_words, revised_words)
        assert all(len(x) >= 1 for x in o2r)

        converted_tree = orig_tree.copy(deep=True)
        for j in range(len(revised_words)):
            if len(r2o[j]) > 1:
                for i in r2o[j][1:]:
                    orig_treeposition = orig_tree.leaf_treeposition(i)
                    if len(orig_treeposition) > 1 and len(
                            orig_tree[orig_treeposition[:-1]]) == 1:
                        converted_tree[orig_treeposition[:-1]] = nltk.Tree(
                            DUMMY_LABEL, [DUMMY_WORD])
                    else:
                        converted_tree[orig_treeposition] = DUMMY_LABEL

        for i in range(len(orig_words)):
            if converted_tree[orig_tree.leaf_treeposition(i)] == DUMMY_LABEL:
                continue
            elif len(o2r[i]) == 1:
                j = o2r[i][0]
                converted_tree[orig_tree.leaf_treeposition(i)] = revised_tree[
                    revised_tree.leaf_treeposition(j)]
            else:
                orig_treeposition = orig_tree.leaf_treeposition(i)
                if len(orig_treeposition) > 1 and len(
                        orig_tree[orig_treeposition[:-1]]) == 1:
                    orig_treeposition = orig_treeposition[:-1]
                    revised_leaves = [
                        revised_tree[revised_tree.leaf_treeposition(j)[:-1]]
                        for j in o2r[i]
                    ]
                    assert all(len(x) == 1 for x in revised_leaves)
                    converted_tree[orig_treeposition] = nltk.Tree(
                        DUMMY_LABEL, revised_leaves)
                else:
                    converted_tree[orig_treeposition] = nltk.Tree(
                        DUMMY_LABEL, [
                            revised_tree[revised_tree.leaf_treeposition(j)]
                            for j in o2r[i]
                        ])

        yield converted_tree
コード例 #16
0
def to_nltk_tree(node):
    if node.n_lefts + node.n_rights > 0:
        t = nltk.Tree(node.orth_,
                      [to_nltk_tree(child) for child in node.children])
        return t
    else:
        return node.orth_
コード例 #17
0
ファイル: treeBinarizer.py プロジェクト: yuchenz/koalaNLP
def binarize(line, lan="en"):
    assert lan in ['en', 'ch'], "illegal language (en or ch): %s" % lan

    root = nltk.Tree(line)
    stack = [root]
    while stack:
        curNode = stack.pop()
        if len(curNode) > 2:
            if curNode.node == 'NP':
                rightBinarize(curNode)
            elif curNode.node == 'VP':
                if lan == 'en':
                    vvBinarize(curNode)
                elif lan == 'ch':
                    if curNode[0].node in vvTags:
                        leftBinarize(curNode)
                    elif curNode[-1].node in vvTags:
                        rightBinarize(curNode)
                    else:
                        vvBinarize(curNode)

        for child in curNode:
            #print >> sys.stderr, child
            if child.height() > 2:
                stack.append(child)
        continue

    return ' '.join(root.pprint().split()) + '\n'
コード例 #18
0
def adjust_ne(chunks, additional_nes):
    for counter, chunk in enumerate(chunks):
        if type(chunk).__name__ == "Tree":
            pass
        elif chunk[0] in additional_nes:  #tuples
            chunks[counter] = nltk.Tree('NE', [chunk])
    return chunks
コード例 #19
0
 def toNltkTrees(self, node):
     if node.n_lefts + node.n_rights > 0:
         return nltk.Tree(
             node.orth_,
             [self.toNltkTrees(child) for child in node.children])
     else:
         return node.orth_
コード例 #20
0
ファイル: ch07.py プロジェクト: zeuscaesar/nltk-examples
def nltk_tree_handling():
  # construction
  tree1 = nltk.Tree("NP", ["Alice"])
  print "tree1=", tree1
  tree2 = nltk.Tree("NP", ["the", "rabbit"])
  print "tree2=", tree2
  tree3 = nltk.Tree("VP", ["chased", tree2])
  print "tree3=", tree3
  tree4 = nltk.Tree("S", [tree1, tree3])
  print "tree4=", tree4
  # deconstruction
  print "tree4[1]=", tree4[1]
  print "tree4[1].node=", tree4[1].node, \
    "tree4[1].leaves()=", tree4[1].leaves()
  print "tree4[1][1][1]=", tree4[1][1][1]
  _traverse(tree4)
コード例 #21
0
ファイル: distance_tree.py プロジェクト: XL2248/DSS-VAE
def tree2list(tree, parent_arc=[]):
    if isinstance(tree, nltk.Tree):
        label = tree.label()
        if isinstance(tree[0], nltk.Tree):
            label = re.split('-|=', tree.label())[0]
        root_arc_list = parent_arc + [label]
        root_arc = '+'.join(root_arc_list)
        if len(tree) == 1:
            root, arc, tag = tree2list(tree[0], parent_arc=root_arc_list)
        elif len(tree) == 2:
            c0, arc0, tag0 = tree2list(tree[0])
            c1, arc1, tag1 = tree2list(tree[1])
            root = [c0, c1]
            arc = arc0 + [root_arc] + arc1
            tag = tag0 + tag1
        else:
            c0, arc0, tag0 = tree2list(tree[0])
            c1, arc1, tag1 = tree2list(nltk.Tree('<empty>', tree[1:]))
            if bin == 0:
                root = [c0] + c1
            else:
                root = [c0, c1]
            arc = arc0 + [root_arc] + arc1
            tag = tag0 + tag1
        return root, arc, tag
    else:
        if len(parent_arc) == 1:
            parent_arc.insert(0, '<empty>')
        # parent_arc[-1] = '<POS>'
        del parent_arc[-1]
        return str(tree), [], ['+'.join(parent_arc)]
コード例 #22
0
def isLegalTree(line, i):
    try:
        t = nltk.Tree(line)
        pt = nltk.ParentedTree(line)
    except ValueError:
        print >> sys.stderr, "illegal tree!!! #" + str(i)
        print >> sys.stderr, line
        exit(1)
コード例 #23
0
    def to_nltk_tree(self, node):
        def tok_format(tok):
            return " ".join(['"%s"' % tok.orth_, tok.tag_, tok.pos_, tok.dep_])

        if node.n_lefts + node.n_rights > 0:
            return nltk.Tree(tok_format(node), [self.to_nltk_tree(child) for child in node.children])
        else:
            return tok_format(node)
コード例 #24
0
 def firstTree(self):
     '''startSymbol is a Label'''
     topright_labels = self.matrix[0][self.n - 1].labels()
     startSymbol = topright_labels[0]
     subtree1 = self.buildSubtrees(startSymbol.child1())
     subtree2 = self.buildSubtrees(startSymbol.child2())
     parse_tree = nltk.Tree(startSymbol.symbol(), [subtree1, subtree2])
     return parse_tree
コード例 #25
0
    def build_parse_tree(self, node_tup, table):
        """
		Given a CKY table and node_tuple (key in table),
		recursively builds an NLTK tree.
		"""
        parent_sym = node_tup[0]
        start_index = node_tup[1]
        stop_index = node_tup[2]
        production = table[start_index][stop_index][node_tup]
        if len(production) == 1:
            # preterminal: build leaf
            return nltk.Tree(parent_sym, production)
        else:
            # branching node, recurse
            left_tree = self.build_parse_tree(production[0], table)
            right_tree = self.build_parse_tree(production[1], table)
            return nltk.Tree(parent_sym, [left_tree, right_tree])
コード例 #26
0
def backtrack(triple, back):
    low = triple[0]
    high = triple[1]
    label = triple[2]
    if (low, high, label) not in back:
        # print(label)
        return label
    else:
        branches = back[(low, high, label)]
        if len(branches) == 1:
            return nltk.Tree(label,
                             [backtrack((low, high, branches[0]), back)])
        elif len(branches) == 3:
            (split, left, right) = branches
            return nltk.Tree(label, [
                backtrack((low, split, left), back),
                backtrack((split, high, right), back)
            ])
コード例 #27
0
    def _tagged_to_parse(self, tagged_tokens):
        """
        Convert a list of tagged tokens to a chunk-parse tree.
        """
        sent = nltk.Tree('S', [])

        for (tok, tag) in tagged_tokens:
            if tag == 'O':
                sent.append(tok)
            elif tag.startswith('B-'):
                sent.append(nltk.Tree(tag[2:], [tok]))
            elif tag.startswith('I-'):
                if (sent and isinstance(sent[-1], Tree)
                        and sent[-1].node == tag[2:]):
                    sent[-1].append(tok)
                else:
                    sent.append(nltk.Tree(tag[2:], [tok]))
        return sent
コード例 #28
0
ファイル: test6.py プロジェクト: microresearch/notes
def tokenize_text_and_tag_named_entities(text):
    tokens = []
    for sentence in nltk.sent_tokenize(text):
        for chunk in nltk.ne_chunk(nltk.pos_tag(nltk.word_tokenize(sentence))):
            if hasattr(chunk, 'node'):
                #                print chunk
                if chunk.node != 'GPE':
                    tmp_tree = nltk.Tree(chunk.node,
                                         [(' '.join(c[0]
                                                    for c in chunk.leaves()))])
                else:
                    tmp_tree = nltk.Tree('LOCATION',
                                         [(' '.join(c[0]
                                                    for c in chunk.leaves()))])
                tokens.append(tmp_tree)
            else:
                tokens.append(chunk[0])
    return tokens
コード例 #29
0
    def neTagSentence(self, s):
        for i in range(len(s)):
            if type(s[i]) is nltk.Tree:
                if (s[i].label() == "NE"):
                    flattened = self.flatten(s[i])
                    result = self.classify(flattened, s, i)
                    s[i] = nltk.Tree(result, [flattened])

        return s
コード例 #30
0
    def chunk(self):
        """
        Identify MWEs inside list of tree-tagger POS tagging representation of words
        :return: updated tree-tagger list
        """
        if self._list_tt is not None:
            tree = nltk.Tree('S',
                             [(word, tag) for [word, tag, _] in self._list_tt])
            tree_pp = self._parse_rcp(label='PPH',
                                      tree=tree,
                                      rule_set=self._pp_rule_set)
            tree_nc = self._parse_rcp(label='NC',
                                      tree=tree_pp,
                                      rule_set=self._nc_ngram_set)

            _reparsed_tree_nc = nltk.Tree('S', [])
            for rule in self._nc_2gram_set:
                rcp_nc_subtree = nltk.RegexpChunkParser([rule],
                                                        chunk_label='NC',
                                                        root_label='NC')
                for child_tree in tree_nc:
                    if isinstance(child_tree, nltk.Tree):
                        reparsed_child_tree = rcp_nc_subtree.parse(child_tree)
                        if reparsed_child_tree != child_tree:
                            if child_tree not in reparsed_child_tree:
                                _reparsed_tree_nc.append(reparsed_child_tree)
                        else:
                            _reparsed_tree_nc.append(child_tree)
                    else:
                        if child_tree not in _reparsed_tree_nc:
                            _reparsed_tree_nc.append(child_tree)

            self._new_list_tt, nc_saving_list = self._tree_to_treetaggerlist(
                tree=_reparsed_tree_nc)
            unnested_nc_saving_list = self._unnest_mwes(nc_saving_list)
            # print("[list_tt]: ", self._list_tt)
            # print("[_new_list_tt]: ", self._new_list_tt)
            self._raw_mwes = self._join_mwes(unnested_nc_saving_list)
            # print("[_unnest_mwes]:", unnested_nc_saving_list)
            self._count_words()
            self._print_measures()
            self._raw_mwes = self.filter_mwes()
            # print("[FILTERED _RAW_MWES]:", self._raw_mwes)
        return self._new_list_tt