コード例 #1
0
def find_combined_taggers_accuracy(train_set, test_set):
    # finding most used tag
    train_words = [word for sent in train_set for word in sent]
    train_set_tags = [tag for (word, tag) in train_words]
    most_frequent_tag = FreqDist(train_set_tags).max()
    default_tagger = DefaultTagger(most_frequent_tag)

    # default tagger
    default_tagger_result = default_tagger.evaluate(test_set)
    print("Default Tagger accuracy: ", default_tagger_result)

    # regex tagger
    patterns = [
        (r'.*ing$', 'VBG'),  # gerunds
        (r'.*ed$', 'VBD'),  # simple past
        (r'.*es$', 'VBZ'),  # 3rd singular present
        (r'.*ould$', 'MD'),  # modals
        (r'.*\'s$', 'NN$'),  # possessive nouns
        (r'.*s$', 'NNS'),  # plural nouns
        (r'^-?[0-9]+(\.[0-9]+)?$', 'CD'),  # cardinal numbers
        (r'.*', 'NN')  # nouns (default)
    ]
    regex_tagger = RegexpTagger(patterns)
    regex_tagger_result = regex_tagger.evaluate(test_set)
    print("Regex Tagger Accuracy: ", regex_tagger_result)

    # unigram tagger with default tagger as backoff
    unigram_tagger = UnigramTagger(train_set, backoff=default_tagger)
    unigram_tagger_result = unigram_tagger.evaluate(test_set)
    print("Unigram Tagger accuracy (Backoff = Default Tagger): ",
          unigram_tagger_result)

    # bigram tagger with different backoffs
    bigram_tagger = BigramTagger(train_set)
    bigram_tagger_backoff_unigram = BigramTagger(train_set,
                                                 backoff=unigram_tagger)
    bigram_tagger_backoff_regex = BigramTagger(train_set, backoff=regex_tagger)

    bigram_tagger_result = bigram_tagger.evaluate(test_set)
    bigram_tagger_backoff_regex_result = bigram_tagger_backoff_regex.evaluate(
        test_set)
    bigram_tagger_backoff_unigram_result = bigram_tagger_backoff_unigram.evaluate(
        test_set)

    print("Bigram Tagger Accuracy: ", bigram_tagger_result)
    print("Bigram Tagger Accuracy (Backoff = Regex Tagger): ",
          bigram_tagger_backoff_regex_result)
    print("Bigram Tagger Accuracy (Backoff = Unigram Tagger): ",
          bigram_tagger_backoff_unigram_result)
コード例 #2
0
def no_backoff_taggers(test, train, corpus='floresta'):
    default_tagger = default_tagger_corpus(corpus)

    info('training {} taggers without backoff'.format(corpus))
    info('this may take a while...\n')

    info(default_tagger)
    default_score = default_tagger.evaluate(test)
    print('accuracy score: {}\n'.format(default_score))

    # unigram tagger
    uni_tagger = UnigramTagger(train)
    # bigram tagger
    bi_tagger = BigramTagger(train)
    # trigram tagger
    tri_tagger = TrigramTagger(train)

    info(uni_tagger)
    uni_score = uni_tagger.evaluate(test)
    print('accuracy score: {}\n'.format(uni_score))

    info(bi_tagger)
    bi_score = bi_tagger.evaluate(test)
    print('accuracy score: {}\n'.format(bi_score))

    info(tri_tagger)
    tri_score = tri_tagger.evaluate(test)
    print('accuracy score: {}\n'.format(tri_score))
コード例 #3
0
def backoff_taggers(test, train, save, corpus='floresta'):
    default_tagger = default_tagger_corpus(corpus)
    info('training {} taggers with backoff'.format(corpus))
    info('this may take a while...\n')

    info(default_tagger)
    default_score = default_tagger.evaluate(test)
    print('accuracy score: {}\n'.format(default_score))

    # UNIGRAM TAGGER WITH BACKOFF
    uni_tagger_backoff = UnigramTagger(train, backoff=default_tagger)

    # BIGRAM TAGGER WITH BACKOFF
    bi_tagger_backoff = BigramTagger(train, backoff=uni_tagger_backoff)

    # TRIGRAM TAGGER WITH BACKOFF
    tri_tagger_backoff = TrigramTagger(train, backoff=bi_tagger_backoff)

    info(uni_tagger_backoff)
    uni_backoff_score = uni_tagger_backoff.evaluate(test)
    print('accuracy score: {}\n'.format(uni_backoff_score))

    info(bi_tagger_backoff)
    bi_backoff_score = bi_tagger_backoff.evaluate(test)
    print('accuracy score: {}\n'.format(bi_backoff_score))

    info(tri_tagger_backoff)
    tri_backoff_score = tri_tagger_backoff.evaluate(test)
    print('accuracy score: {}\n'.format(tri_backoff_score))

    if not save:
        return

    accuracy_dict = {}
    accuracy_dict['uni'] = uni_backoff_score
    accuracy_dict['bi'] = bi_backoff_score
    accuracy_dict['tri'] = tri_backoff_score

    # Saving our Trigram-tagger with backoff
    if uni_backoff_score == max(accuracy_dict.values()):
        tagger_file = '{}_unigram_tagger_backoff.pkl'.format(corpus)
        output = open(tagger_file, 'wb')
        dump(uni_tagger_backoff, output, -1)
    elif bi_backoff_score == max(accuracy_dict.values()):
        tagger_file = '{}_bigram_tagger_backoff.pkl'.format(corpus)
        output = open(tagger_file, 'wb')
        dump(bi_tagger_backoff, output, -1)
    elif tri_backoff_score == max(accuracy_dict.values()):
        tagger_file = '{}_trigram_tagger_backoff.pkl'.format(corpus)
        dump(tri_tagger_backoff, output, -1)
    output.close()
    info('saving %s...\n', tagger_file)
コード例 #4
0
def ngram_tag_with_backoff():
    fd = FreqDist(brown.words(categories='news'))
    #Get the most frequent tag of each word in the corpus
    cfd = ConditionalFreqDist(brown.tagged_words(
        categories='news'))  #, backoff=nltk.DefaultTagger('NN'))
    #Get the first 100 most common words
    most_freq_words = fd.most_common(1000000)
    #Create a dictionary in form of  a tuple (word, most_likely_tag)
    likely_tags = dict(
        (word, cfd[word].max()) for (word, _) in most_freq_words)
    #Unigram means tag by using its most frequency tag (no context needed) just like unigram in the Ngram topic
    lookup_tagger = UnigramTagger(model=likely_tags)
    #With Backoff
    train_len = int(len(brown_tagged_sents) * 0.9)
    print(brown_tagged_sents[train_len:])
    bigram_tagger = BigramTagger(brown_tagged_sents[:train_len],
                                 backoff=lookup_tagger)
    score = bigram_tagger.evaluate(brown_tagged_sents[train_len:])
    print(score)
コード例 #5
0
class CombinedTagger:
    def __init__(self, train=None, default=None, name=None):
        self.name = name
        # As found on page 199 of the nltk book
        regexps = [
            (r'.*ing$', 'VBG'),  # gerunds
            (r'.*ed$', 'VBD'),  # simple past
            (r'.*es$', 'VBZ'),  # 3rd singular present
            (r'.*ould$', 'MD'),  # modals
            (r'.*\'s$', 'NN$'),  # possessive nouns
            (r'.*s$', 'NNS'),  # plural nouns
            (r'^-?[0-9]+(.[0-9]+)?$', 'CD'),  # cardinal numbers
        ]
        self.default = default
        self.regex = RegexpTagger(regexps, backoff=self.default)
        self.unigram = UnigramTagger(train=train, backoff=self.regex)
        self.bigram = BigramTagger(train=train, backoff=self.unigram)

    def evaluate(self, data):
        return self.bigram.evaluate(data)

    def __repr__(self):
        return '<Combined Tagger: train={}>'.format(self.name)
コード例 #6
0
    def createModel(self):

        model_name = None
        try:
            unigrams = self.buildUnigrams()

            N = len(self.corpusSents)
            toTraining = round(self.training_portion * N)

            #logging.info("Sentencias totales:" + str(N))

            training = self.corpusSents[:toTraining]
            test = self.corpusSents[toTraining:]

            post_patterns = []

            for regex, post in self.regex_list:
                try:
                    regex = regex.decode('utf-8')
                except:
                    pass

                post_patterns.append((regex, post))

            for regex, post in self.config.items('postaggers.regex'):
                post_patterns.append((regex.decode('utf-8'), post))

            regexpTagger = RegexpTagger(post_patterns)
            unigramTagger = UnigramTagger(unigrams + training,
                                          backoff=regexpTagger)
            bigramTagger = BigramTagger(training, backoff=unigramTagger)
            trigramTagger = TrigramTagger(training, backoff=bigramTagger)
            NTagger = NgramTagger(self.max_ngrams,
                                  training,
                                  backoff=trigramTagger)

            print("Sentencias de entrenamiento para n-taggers:" +
                  str(len(training)))
            print("Sentencias de entrenamiento para unitaggers:" +
                  str(len(unigrams)))
            print(
                "Cantidad de palabras ADICIONALES de DICCIONARIOS para el unitagger:"
                + str(len(unigrams)))
            print("Sentencias para testing:" + str(len(test)))
            print("Expresiones regulares para el Tagger:")

            for post_regex in post_patterns:
                print post_regex

            if self.training_portion != 1:

                score_ut = unigramTagger.evaluate(test)
                score_bt = bigramTagger.evaluate(test) - 0.002
                score_tt = trigramTagger.evaluate(test)
                score_nt = NTagger.evaluate(test)

                scores = [score_ut, score_bt, score_tt, score_nt]
                tagger_names = ["uTagger", "biTagger", "triTagger", "NTagger"]
                taggers = [unigramTagger, bigramTagger, trigramTagger, NTagger]

                bestTagger_index = scores.index(max(scores))
                best_msg = max(scores), tagger_names[bestTagger_index]

            fname = self.taggers_path + tagger_names[bestTagger_index]
            if os.path.isfile(fname + self.tagger_extension_file):
                fname = fname + str(len(listdir(
                    self.taggers_path))) + self.tagger_extension_file
            else:
                fname = self.taggers_path + tagger_names[
                    bestTagger_index] + self.tagger_extension_file

            model = taggers[bestTagger_index]

            f = open(fname, 'wb')
            pickle.dump(model, f)
            f.close()

            print("Guardando el tagger :" + fname)
            #logging.info("Guardando el mejor tagger :" + fname)

            model_name = fname

        except Exception, e:
            print "ERRPR EN POS TAGGER GENERATOR:", str(e)
            pdb.set_trace()
コード例 #7
0
ファイル: 02PosTagging.py プロジェクト: hannibunny/nlpbook
# ## N-Gram Tagger
# Unigram taggers assign to each wort $w_n$ the tag $t_n$, which is the most frequent tag for $w_n$ in the training corpus. N-Gram taggers are a generalization of Unigram-Taggers. During training they determine for each combination of $N-1$ previous tags $t_{n-1},t_{n-2},...$ and the current word $w_n$ the most frequent tag $t_n$. Tagging is then realized, by inspecting the $n-1$ previous tags and the current word $w_n$ and assigning the most frequent tag, which appeared for this combination in the training corpus.  
# ![NgramTagging](https://maucher.home.hdm-stuttgart.de/Pics/NGramTagging.png)

# In[18]:


baseline=nltk.DefaultTagger('NOUN')
unigram = UnigramTagger(train=train_sents,backoff=baseline)
bigram = BigramTagger(train=train_sents,backoff=unigram)


# In[19]:


bigram.evaluate(test_sents)


# # Find most frequent nouns
# The most frequent nouns usually provide information on the subject of a text. Below, the most frequent nouns of an already tagged text of the *Treebank*-corpus are determined. Let's see if we can conclude the text's subject.  

# In[20]:


from nltk.corpus import treebank
from nltk import FreqDist
from nltk import bigrams

print("\nTreebank sentences: ", treebank.sents(fileids="wsj_0003.mrg"))

コード例 #8
0
# Avalia a acurácia do POS-Tagger ao etiquetar as sentenças de TESTE
tagger0.evaluate(test_tsents)

from nltk import UnigramTagger

# Define um tagger Unigram (falaremos mais sobre isso depois)
# Este tagger aprende ao ver as sentenças etiquetadas na base de TREINAMENTO
# Além disso, utiliza o DefaultTagger caso não saiba o que marcar
tagger1 = UnigramTagger(train_tsents, backoff=tagger0)
tagger1.evaluate(test_tsents)

from nltk import BigramTagger

# Define um tagger Bigram (falaremos mais sobre isso depois)
tagger2 = BigramTagger(train_tsents, backoff=tagger1)
tagger2.evaluate(test_tsents)

# Existe ainda mais um POS-Tagger no NLTK, o TnT
from nltk.tag import tnt
tnt_pos_tagger = tnt.TnT()
tnt_pos_tagger.train(train_tsents)
tnt_pos_tagger.evaluate(test_tsents)

# Se deseja apenas realizar o POS-Tagging, e não avaliar
tagger2.tag(tokenize.word_tokenize(texto, language='portuguese'))
"""Caso queira armazenar o modelo treinado para evitar o re-treinamento veja a seção 5.6 deste [link](https://www.nltk.org/book/ch05.html).

##**ATIVIDADE PRÁTICA**
A seguir algumas práticas relacionadas às operações básicas de PLN, NLTK e expressões regulares.
"""
コード例 #9
0
def ngram_tagger():
    train_len = int(len(brown_tagged_sents) * 0.9)
    print(brown_tagged_sents[train_len:])
    bigram_tagger = BigramTagger(brown_tagged_sents[:train_len])
    score = bigram_tagger.evaluate(brown_tagged_sents[train_len:])
    print(score)
コード例 #10
0
	def createModel(self):

		
		model_name=None
		try:
			unigrams=self.buildUnigrams()
			
			N=len(self.corpusSents)
			toTraining=round(self.training_portion*N)
			
			#logging.info("Sentencias totales:" + str(N))

			training=self.corpusSents[:toTraining]
			test=self.corpusSents[toTraining:]
			
			post_patterns=[]

			for regex,post in self.regex_list:
				try:
					regex=regex.decode('utf-8')
				except:
					pass
				
				post_patterns.append((regex,post))


			
			for regex,post in self.config.items('postaggers.regex'):
				post_patterns.append((regex.decode('utf-8'),post))

		
			regexpTagger  = RegexpTagger(post_patterns)
			unigramTagger = UnigramTagger(unigrams+training,backoff=regexpTagger)	
			bigramTagger= BigramTagger(training, backoff=unigramTagger) 
			trigramTagger = TrigramTagger(training, backoff=bigramTagger)
			NTagger=NgramTagger(self.max_ngrams,training,backoff=trigramTagger)

			print("Sentencias de entrenamiento para n-taggers:" + str(len(training)))
			print("Sentencias de entrenamiento para unitaggers:" + str(len(unigrams)))
			print("Cantidad de palabras ADICIONALES de DICCIONARIOS para el unitagger:" + str(len(unigrams)))
			print("Sentencias para testing:" + str(len(test)))
			print("Expresiones regulares para el Tagger:")
			
			for post_regex in post_patterns:
				print post_regex
				
		
			if self.training_portion!=1:
		
				score_ut=unigramTagger.evaluate(test)
				score_bt=bigramTagger.evaluate(test)-0.002
				score_tt=trigramTagger.evaluate(test)
				score_nt=NTagger.evaluate(test)

			

				scores=[score_ut,score_bt,score_tt,score_nt]
				tagger_names=["uTagger","biTagger","triTagger","NTagger"]
				taggers=[unigramTagger,bigramTagger,trigramTagger,NTagger]

				bestTagger_index= scores.index(max(scores))
				best_msg=max(scores),tagger_names[bestTagger_index]
			
		
			fname=self.taggers_path + tagger_names[bestTagger_index]
			if os.path.isfile(fname+self.tagger_extension_file):
				fname=fname+str(len(listdir(self.taggers_path)))+self.tagger_extension_file
			else:
				fname=self.taggers_path + tagger_names[bestTagger_index]+self.tagger_extension_file
			
			model=taggers[bestTagger_index]

			f = open(fname,'wb')
			pickle.dump(model, f)
			f.close()
			
			print ("Guardando el tagger :" + fname)
			#logging.info("Guardando el mejor tagger :" + fname)
			
			model_name=fname
			
		except Exception,e:
			print "ERRPR EN POS TAGGER GENERATOR:",str(e)
			pdb.set_trace()