コード例 #1
0
def net_inference(model, reqs):

    CTX.logger.info("inference begin...")
    # datas = json.loads(args)
    predictor = model['predictor']
    classes_dict = model['labels']['class']
    # threshold uses for default 
    threshold_dict = model['labels']['minMt'] # minModelThreshold
    rets = []
    nms = py_nms_wrapper(config.TEST.NMS)
    box_voting = py_box_voting_wrapper(config.TEST.BOX_VOTING_IOU_THRESH, config.TEST.BOX_VOTING_SCORE_THRESH,
                                      with_nms=True)

    try:
        for data in reqs:
            try:
                im = load_image(data['data']['uri'], body=data['data']['body'])
            except ErrorBase as e:
                rets.append({"code":e.code, "message": e.message, "result": None})
                continue
                # return [], 400, 'load image error'

            if im.shape[0] > im.shape[1]:
                long_side, short_side = im.shape[0], im.shape[1]
            else:
                long_side, short_side = im.shape[1], im.shape[0]

            if short_side > 0 and float(long_side)/float(short_side) > 50.0:
                msg = "aspect ration is too large, long_size:short_side should not larger than 50.0"
                # raise ErrorBase.__init__(400, msg)
                rets.append({"code": 400, "message": msg, "result": None})
                continue

            data_batch, data_names, im_scale = generate_batch(im)
            scores, boxes, data_dict = im_detect(predictor,
                                                data_batch,
                                                data_names,
                                                im_scale,
                                                config)
            det_ret = []
            # labels.csv file not include background
            for cls_index in sorted(classes_dict.keys()):
                cls_ind = cls_index
                cls_name = classes_dict.get(cls_ind)
                cls_boxes = boxes[0][:, 4:8] if config.CLASS_AGNOSTIC else boxes[0][:, 4 * cls_ind:4 *4 * (cls_ind + 1)]
                cls_scores = scores[0][:, cls_ind, np.newaxis]
                threshold = float(threshold_dict[cls_ind])
                keep = np.where(cls_scores > threshold)[0]
                dets = np.hstack((cls_boxes, cls_scores)).astype(np.float32)[keep, :]
                keep = nms(dets)
                det_ret.extend(_build_result(det, cls_name, cls_ind, model['labels'])
                    for det in dets[keep, :])
            # get review value
            rets.append(dict(code=0,message='',result=dict(detections=det_ret)))

    except Exception as e:
        # print(traceback.format_exc())
        CTX.logger.info("inference error:%s"%(traceback.format_exc()))
        return [], 599, str(e)
    return rets, 0, ''
コード例 #2
0
def demo_net(cfg,predictor, dataset, image_set,
             root_path, dataset_path, thresh, vis=False, use_box_voting=False,
             test_file='test.txt',out_prefix='output',vis_image_dir='vis'):
    """
    generate data_batch -> im_detect -> post process
    :param predictor: Predictor
    :param image_name: image name
    :param vis: will save as a new image if not visualized
    :return: None
    """
    # visualization
    nms = py_nms_wrapper(config.TEST.NMS)
    box_voting = py_box_voting_wrapper(config.TEST.BOX_VOTING_IOU_THRESH, config.TEST.BOX_VOTING_SCORE_THRESH,
                                       with_nms=True)

    with open(test_file) as f:
        image_set_index = [x.strip().split(' ')[0] for x in f.readlines()]

    num_images = len(image_set_index)
    num_classes = len(CLASSES)

    all_boxes = [[[] for _ in xrange(num_images)]
                 for _ in xrange(num_classes)]


    out_score_list,out_json_list = [],[]

    jsonlistwithscore ,jsonlistwithoutscore = [[] for _ in xrange(num_images)],[[] for _ in xrange(num_images)]

    predict_url(cfg, predictor, image_set_index, nms, box_voting, all_boxes, jsonlistwithscore,
                jsonlistwithoutscore,
                thresh, vis=False, use_box_voting=False, num_gpu=1)


    fout = open(out_prefix + '_vali.txt','w')
    fout_score = open(out_prefix + '_vali_score.txt', 'w')

    for i in range(num_images):
        fout.write(json.dumps(jsonlistwithoutscore[i]) + '\n')
        fout.flush()
        fout_score.write(json.dumps(jsonlistwithscore[i]) + '\n')
        fout_score.flush()


    print("num of images: detection:{}, gt:{}".format(len(all_boxes[0]), num_images))
    #assert len(all_boxes) == num_images, 'calculations not complete'

    # save results
    cache_folder = os.path.join(root_path, 'cache')
    if not os.path.exists(cache_folder):
        os.mkdir(cache_folder)

    cache_file = os.path.join(cache_folder, dataset + '_' + image_set + '_' + out_prefix + '_detections.pkl')
    with open(cache_file, 'wb') as f:
        cPickle.dump(all_boxes, f, cPickle.HIGHEST_PROTOCOL)
コード例 #3
0
def demo_net(predictor,
             dataset,
             image_set,
             root_path,
             dataset_path,
             thresh,
             vis=False,
             vis_image_dir='vis',
             use_box_voting=False):
    """
    generate data_batch -> im_detect -> post process
    :param predictor: Predictor
    :param image_name: image name
    :param vis: will save as a new image if not visualized
    :return: None
    """
    # visualization
    nms = py_nms_wrapper(config.TEST.NMS)
    box_voting = py_box_voting_wrapper(config.TEST.BOX_VOTING_IOU_THRESH,
                                       config.TEST.BOX_VOTING_SCORE_THRESH,
                                       with_nms=True)

    image_set_index_file = os.path.join(dataset_path, 'DET', 'ImageSets',
                                        'DET', image_set + '.txt')
    assert os.path.exists(
        image_set_index_file), image_set_index_file + ' not found'
    with open(image_set_index_file) as f:
        image_set_index = [x.strip().split(' ')[0] for x in f.readlines()]

    num_images = len(image_set_index)
    num_classes = len(CLASSES)
    all_boxes = [[[] for _ in xrange(num_images)] for _ in xrange(num_classes)]
    i = 0
    for index in image_set_index:
        image_file = image_path_from_index(index, dataset_path, image_set)
        print("processing {}/{} image:{}".format(i, num_images, image_file))
        im = cv2.imread(image_file)
        data_batch, data_names, im_scale = generate_batch(im)
        scores, boxes, data_dict = im_detect(predictor, data_batch, data_names,
                                             im_scale, config)
        for cls in CLASSES:
            cls_ind = CLASSES.index(cls)
            #print cls_ind, 4 * cls_ind, 4 * (cls_ind + 1), boxes[0], boxes[0][:, 4 * cls_ind:4 * (cls_ind + 1)]
            #cls_boxes = boxes[0][:, 4 * cls_ind:4 * (cls_ind + 1)]
            cls_boxes = boxes[0][:, 4:8] if config.CLASS_AGNOSTIC else boxes[
                0][:, 4 * cls_ind:4 * (cls_ind + 1)]
            cls_scores = scores[0][:, cls_ind, np.newaxis]
            keep = np.where(cls_scores >= thresh)[0]
            cls_dets = np.hstack(
                (cls_boxes, cls_scores)).astype(np.float32)[keep, :]
            keep = nms(cls_dets)

            # apply box voting after nms
            if use_box_voting:
                nms_cls_dets = cls_dets[keep, :]
                all_boxes[cls_ind][i] = box_voting(nms_cls_dets, cls_dets)
            else:
                all_boxes[cls_ind][i] = cls_dets[keep, :]

        boxes_this_image = [[]] + [
            all_boxes[j][i] for j in xrange(1, len(CLASSES))
        ]

        i += 1
        if vis:
            #vis_all_detection(data_dict['data'].asnumpy(), boxes_this_image, CLASSES, im_scale)
            if not os.path.exists(vis_image_dir):
                os.mkdir(vis_image_dir)
            result_file = os.path.join(
                vis_image_dir,
                index.strip().split('/')[-1] + '_result' + '.JPEG')
            print('results saved to %s' % result_file)
            im = draw_all_detection(data_dict['data'].asnumpy(),
                                    boxes_this_image, CLASSES, im_scale)
            im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
            cv2.imwrite(result_file, im)

    print("num of images: detection:{}, gt:{}".format(len(all_boxes[0]),
                                                      num_images))
    #assert len(all_boxes) == num_images, 'calculations not complete'

    # save results
    cache_folder = os.path.join(root_path, 'cache')
    if not os.path.exists(cache_folder):
        os.mkdir(cache_folder)

    cache_file = os.path.join(cache_folder,
                              dataset + '_' + image_set + '_detections.pkl')
    with open(cache_file, 'wb') as f:
        cPickle.dump(all_boxes, f, cPickle.HIGHEST_PROTOCOL)
コード例 #4
0
ファイル: test-online.py プロジェクト: zrh0712/allToolkits
def net_inference(model):
    """
    generate data_batch -> im_detect -> post process
    :param predictor: Predictor
    :param image_name: image name
    :return: None
    """

    # datas = json.loads(args)
    predictor = model['predictor']
    classes = model['classes']
    threshold = model['threshold']
    thresholds = model['thresholds']
    rets = []
    nms = py_nms_wrapper(config.TEST.NMS)
    box_voting = py_box_voting_wrapper(config.TEST.BOX_VOTING_IOU_THRESH,
                                       config.TEST.BOX_VOTING_SCORE_THRESH,
                                       with_nms=True)
    try:
        time_str = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
        fileOp = "/tmp/eval/init/20170930_guns_1083-begin-" + time_str + '.csv'
        fileOp_op = open(fileOp, 'w')
        time_str = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
        fileOp_1 = "/tmp/eval/init/20170930_guns_1083-end-" + time_str + '.csv'
        fileOp_1_op = open(fileOp_1, 'w')
        fileOp_2 = "/tmp/eval/init/20170930_guns_1083-image-" + time_str + '.jpg'
        for i in sorted(os.listdir("/tmp/eval/init/images")):
            imageFile = os.path.join("/tmp/eval/init/images", i)
            try:
                im = load_image(imageFile, 50.0)
                # cv2.imwrite('fileOp_2', im)
                print(im[0, :])
                # np.savetxt(fileOp_2, im, delimiter=",")
            except ErrorBase as e:
                rets.append({"code": e.code, "message": e.message})
                continue

            data_batch, data_names, im_scale = generate_batch(im)
            print("*" * 100)
            scores, boxes, data_dict = im_detect(predictor, data_batch,
                                                 data_names, im_scale, config)
            det_ret = []
            for cls_index, cls in enumerate(classes[1:], start=1):
                if len(cls) > 1:
                    cls_ind = int(cls[0])
                    cls_name = cls[1]
                else:
                    cls_ind = cls_index
                    cls_name = cls[0]
                cls_boxes = boxes[0][:,
                                     4:8] if config.CLASS_AGNOSTIC else boxes[
                                         0][:, 4 * cls_ind:4 * (cls_ind + 1)]
                cls_scores = scores[0][:, cls_ind, np.newaxis]
                if len(classes) <= len(thresholds):
                    threshold = thresholds[cls_ind]
                keep = np.where(cls_scores >= threshold)[0]
                dets = np.hstack(
                    (cls_boxes, cls_scores)).astype(np.float32)[keep, :]
                if "20170930_guns_1083.jpg" in imageFile:
                    # print(dets)
                    # print('*'*100)
                    # for i in dets:
                    #     fileOp_op.write(i)
                    #     fileOp_op.write('\n')
                    np.savetxt(fileOp, dets, delimiter=",")
                    pass
                keep = nms(dets)
                if "20170930_guns_1083.jpg" in imageFile:
                    # print("end"*10)
                    # print(dets[keep, :])
                    # print('*'*100)
                    # for i in dets:
                    #     fileOp_1_op.write(i)
                    #     fileOp_1_op.write('\n')
                    np.savetxt(fileOp_1, dets[keep, :], delimiter=",")
                det_ret.extend(
                    _build_result(det, cls_name, cls_ind)
                    for det in dets[keep, :])

            rets.append(
                dict(code=0,
                     message=imageFile,
                     result=json.dumps(dict(detections=det_ret))))

    except Exception, e:
        print(traceback.format_exc())