コード例 #1
0
ファイル: nmslib.py プロジェクト: mindis/ann-benchmarks-1
    def fit(self, X):
        if self._method_name == 'vptree':
            # To avoid this issue:
            # terminate called after throwing an instance of 'std::runtime_error'
            # what():  The data size is too small or the bucket size is too big. Select the parameters so that <total # of records> is NOT less than <bucket size> * 1000
            # Aborted (core dumped)
            self._index_param.append('bucketSize=%d' %
                                     min(int(X.shape[0] * 0.0005), 1000))

        self._index = nmslib.init(self._nmslib_metric, [], self._method_name,
                                  nmslib.DataType.DENSE_VECTOR,
                                  nmslib.DistType.FLOAT)

        for i, x in enumerate(X):
            nmslib.addDataPoint(self._index, i, x.tolist())

        if os.path.exists(self._index_name):
            print "Loading index from file"
            nmslib.loadIndex(self._index, self._index_name)
        else:
            nmslib.createIndex(self._index, self._index_param)
            if self._save_index:
                nmslib.saveIndex(self._index, self._index_name)

        nmslib.setQueryTimeParams(self._index, self._query_param)
コード例 #2
0
ファイル: nmslib_util.py プロジェクト: TVlaic/AVSP
 def create(self):
     if self.created:
         return False
     else:
         nmslib.createIndex(self.index, self.conf.index_param)
         nmslib.setQueryTimeParams(self.index, self.conf.query_time_param)
         self.created = True
         return True
コード例 #3
0
def test_string_fresh(batch=True):
    DATA_STRS = ["xyz", "beagcfa", "cea", "cb",
                 "d", "c", "bdaf", "ddcd",
                 "egbfa", "a", "fba", "bcccfe",
                 "ab", "bfgbfdc", "bcbbgf", "bfbb"
                 ]
    QUERY_STRS = ["abc", "def", "ghik"]
    space_type = 'leven'
    space_param = []
    method_name = 'small_world_rand'
    index_name  = method_name + '.index'

    index = nmslib.init(
                             space_type,
                             space_param,
                             method_name,
                             nmslib.DataType.OBJECT_AS_STRING,
                             nmslib.DistType.INT)

    if batch:
        print 'DATA_STRS', DATA_STRS
        positions = nmslib.addDataPointBatch(index, np.arange(len(DATA_STRS), dtype=np.int32), DATA_STRS)
    else:
        for id, data in enumerate(DATA_STRS):
            nmslib.addDataPoint(index, id, data)

    print 'Let\'s print a few data entries'
    print 'We have added %d data points' % nmslib.getDataPointQty(index)

    for i in range(0,min(MAX_PRINT_QTY,nmslib.getDataPointQty(index))):
        print nmslib.getDataPoint(index,i)

    print 'Let\'s invoke the index-build process'

    index_param = ['NN=17', 'initIndexAttempts=3', 'indexThreadQty=4']
    query_time_param = ['initSearchAttempts=3']

    nmslib.createIndex(index, index_param)
    nmslib.setQueryTimeParams(index, query_time_param)

    print 'Query time parameters are set'

    print "Results for the freshly created index:"

    k = 2
    if batch:
        num_threads = 10
        res = nmslib.knnQueryBatch(index, num_threads, k, QUERY_STRS)
    for idx, data in enumerate(QUERY_STRS):
        res = nmslib.knnQuery(index, k, data)
        print idx, data, res, [DATA_STRS[i] for i in res]

    nmslib.saveIndex(index, index_name)

    print "The index %s is saved" % index_name

    nmslib.freeIndex(index)
コード例 #4
0
ファイル: nmslib.py プロジェクト: ilyaraz/ann-benchmarks
    def fit(self, X):
        if self._method_name == 'vptree':
            # To avoid this issue:
            # terminate called after throwing an instance of 'std::runtime_error'
            # what():  The data size is too small or the bucket size is too big. Select the parameters so that <total # of records> is NOT less than <bucket size> * 1000
            # Aborted (core dumped)
            self._method_param.append('bucketSize=%d' % min(int(X.shape[0] * 0.0005), 1000))

        self._index = nmslib.init(space=self._nmslib_metric, method=self._method_name)
        self._index.addDataPointBatch(X)

        nmslib.createIndex(self._index, self._method_param)
コード例 #5
0
ファイル: test_nmslib.py プロジェクト: nliu86/nmslib
def test_string_fresh(batch=True):
    DATA_STRS = [
        "xyz", "beagcfa", "cea", "cb", "d", "c", "bdaf", "ddcd", "egbfa", "a",
        "fba", "bcccfe", "ab", "bfgbfdc", "bcbbgf", "bfbb"
    ]
    QUERY_STRS = ["abc", "def", "ghik"]
    space_type = 'leven'
    space_param = []
    method_name = 'small_world_rand'
    index_name = method_name + '.index'

    index = nmslib.init(space_type, space_param, method_name,
                        nmslib.DataType.OBJECT_AS_STRING, nmslib.DistType.INT)

    if batch:
        print 'DATA_STRS', DATA_STRS
        positions = nmslib.addDataPointBatch(
            index, np.arange(len(DATA_STRS), dtype=np.int32), DATA_STRS)
    else:
        for id, data in enumerate(DATA_STRS):
            nmslib.addDataPoint(index, id, data)

    print 'Let\'s print a few data entries'
    print 'We have added %d data points' % nmslib.getDataPointQty(index)

    for i in range(0, min(MAX_PRINT_QTY, nmslib.getDataPointQty(index))):
        print nmslib.getDataPoint(index, i)

    print 'Let\'s invoke the index-build process'

    index_param = ['NN=17', 'initIndexAttempts=3', 'indexThreadQty=4']
    query_time_param = ['initSearchAttempts=3']

    nmslib.createIndex(index, index_param)
    nmslib.setQueryTimeParams(index, query_time_param)

    print 'Query time parameters are set'

    print "Results for the freshly created index:"

    k = 2
    if batch:
        num_threads = 10
        res = nmslib.knnQueryBatch(index, num_threads, k, QUERY_STRS)
    for idx, data in enumerate(QUERY_STRS):
        res = nmslib.knnQuery(index, k, data)
        print idx, data, res, [DATA_STRS[i] for i in res]

    nmslib.saveIndex(index, index_name)

    print "The index %s is saved" % index_name

    nmslib.freeIndex(index)
コード例 #6
0
    def fit(self, X):
        if self._method_name == 'vptree':
            self._method_param.append('bucketSize=%d' %
                                      min(int(X.shape[0] * 0.0005), 1000))

        self._index = nmslib.init('l2', [], self._method_name,
                                  nmslib.DataType.DENSE_VECTOR,
                                  nmslib.DistType.FLOAT)
        for i, x in enumerate(X):
            nmslib.addDataPoint(self._index, i, x.tolist())

        nmslib.createIndex(self._index, self._method_param)
コード例 #7
0
def test_object_as_string_fresh(batch=True):
    space_type = 'cosinesimil'
    space_param = []
    method_name = 'small_world_rand'
    index_name  = method_name + '.index'
    if os.path.isfile(index_name):
        os.remove(index_name)
    index = nmslib.init(
                             space_type,
                             space_param,
                             method_name,
                             nmslib.DataType.OBJECT_AS_STRING,
                             nmslib.DistType.FLOAT)

    if batch:
        data = [s for s in read_data_as_string('sample_dataset.txt')]
        positions = nmslib.addDataPointBatch(index, np.arange(len(data), dtype=np.int32), data)
    else:
        for id, data in enumerate(read_data_as_string('sample_dataset.txt')):
            nmslib.addDataPoint(index, id, data)

    print 'Let\'s print a few data entries'
    print 'We have added %d data points' % nmslib.getDataPointQty(index)

    for i in range(0,min(MAX_PRINT_QTY,nmslib.getDataPointQty(index))):
       print nmslib.getDataPoint(index, i)

    print 'Let\'s invoke the index-build process'

    index_param = ['NN=17', 'initIndexAttempts=3', 'indexThreadQty=4']
    query_time_param = ['initSearchAttempts=3']

    nmslib.createIndex(index, index_param)

    print 'The index is created'

    nmslib.setQueryTimeParams(index,query_time_param)

    print 'Query time parameters are set'

    print "Results for the freshly created index:"

    k = 3

    for idx, data in enumerate(read_data_as_string('sample_queryset.txt')):
        print idx, nmslib.knnQuery(index, k, data)

    nmslib.saveIndex(index, index_name)

    print "The index %s is saved" % index_name

    nmslib.freeIndex(index)
コード例 #8
0
def test_object_as_string_fresh(batch=True):
    space_type = 'cosinesimil'
    space_param = []
    method_name = 'small_world_rand'
    index_name  = method_name + '.index'
    if os.path.isfile(index_name):
        os.remove(index_name)
    index = nmslib.init(
                             space_type,
                             space_param,
                             method_name,
                             nmslib.DataType.OBJECT_AS_STRING,
                             nmslib.DistType.FLOAT)

    if batch:
        data = [s for s in read_data_as_string('sample_dataset.txt')]
        positions = nmslib.addDataPointBatch(index, np.arange(len(data), dtype=np.int32), data)
    else:
        for id, data in enumerate(read_data_as_string('sample_dataset.txt')):
            nmslib.addDataPoint(index, id, data)

    print('Let\'s print a few data entries')
    print('We have added %d data points' % nmslib.getDataPointQty(index))

    for i in range(0,min(MAX_PRINT_QTY,nmslib.getDataPointQty(index))):
       print(nmslib.getDataPoint(index, i))

    print('Let\'s invoke the index-build process')

    index_param = ['NN=17', 'efConstruction=50', 'indexThreadQty=4']
    query_time_param = ['efSearch=50']

    nmslib.createIndex(index, index_param)

    print('The index is created')

    nmslib.setQueryTimeParams(index,query_time_param)

    print('Query time parameters are set')

    print("Results for the freshly created index:")

    k = 3

    for idx, data in enumerate(read_data_as_string('sample_queryset.txt')):
        print(idx, nmslib.knnQuery(index, k, data))

    nmslib.saveIndex(index, index_name)

    print("The index %s is saved" % index_name)

    nmslib.freeIndex(index)
コード例 #9
0
ファイル: nmslib.py プロジェクト: zhijieqiu/ann-benchmarks
    def fit(self, X):
        if self._method_name == 'vptree':
            # To avoid this issue:
            # terminate called after throwing an instance of 'std::runtime_error'
            # what():  The data size is too small or the bucket size is too big. Select the parameters so that <total # of records> is NOT less than <bucket size> * 1000
            # Aborted (core dumped)
            self._method_param.append('bucketSize=%d' %
                                      min(int(X.shape[0] * 0.0005), 1000))

        self._index = nmslib.init(space=self._nmslib_metric,
                                  method=self._method_name)
        self._index.addDataPointBatch(X)

        nmslib.createIndex(self._index, self._method_param)
コード例 #10
0
ファイル: nmslib.py プロジェクト: maumueller/ann-benchmarks
    def fit(self, X):
        if self._method_name == 'vptree':
            # To avoid this issue:
            # terminate called after throwing an instance of 'std::runtime_error'
            # what():  The data size is too small or the bucket size is too big. Select the parameters so that <total # of records> is NOT less than <bucket size> * 1000
            # Aborted (core dumped)
            self._method_param.append('bucketSize=%d' % min(int(X.shape[0] * 0.0005), 1000))
                                        
        self._index = nmslib.init(self._nmslib_metric, [], self._method_name, nmslib.DataType.DENSE_VECTOR, nmslib.DistType.FLOAT)
    
        for i, x in enumerate(X):
            nmslib.addDataPoint(self._index, i, x.tolist())

        nmslib.createIndex(self._index, self._method_param)
コード例 #11
0
def test_sparse_vector_fresh():
    space_type = 'cosinesimil_sparse_fast'
    space_param = []
    method_name = 'small_world_rand'
    index_name  = method_name + '_sparse.index'
    if os.path.isfile(index_name):
        os.remove(index_name)
    index = nmslib.init(
                             space_type,
                             space_param,
                             method_name,
                             nmslib.DataType.SPARSE_VECTOR,
                             nmslib.DistType.FLOAT)

    for id, data in enumerate(read_sparse_data('sample_sparse_dataset.txt')):
        nmslib.addDataPoint(index, id, data)

    print('We have added %d data points' % nmslib.getDataPointQty(index))

    for i in range(0,min(MAX_PRINT_QTY,nmslib.getDataPointQty(index))):
       print(nmslib.getDataPoint(index,i))

    print('Let\'s invoke the index-build process')

    index_param = ['NN=17', 'efConstruction=50', 'indexThreadQty=4']
    query_time_param = ['efSearch=50']

    nmslib.createIndex(index, index_param)

    print('The index is created')

    nmslib.setQueryTimeParams(index,query_time_param)

    print('Query time parameters are set')

    print("Results for the freshly created index:")

    k = 3

    for idx, data in enumerate(read_sparse_data('sample_sparse_queryset.txt')):
        print(idx, nmslib.knnQuery(index, k, data))

    nmslib.saveIndex(index, index_name)

    print("The index %s is saved" % index_name)

    nmslib.freeIndex(index)
コード例 #12
0
def test_sparse_vector_fresh():
    space_type = 'cosinesimil_sparse'
    space_param = []
    method_name = 'small_world_rand'
    index_name  = method_name + '_sparse.index'
    if os.path.isfile(index_name):
        os.remove(index_name)
    index = nmslib.init(
                             space_type,
                             space_param,
                             method_name,
                             nmslib.DataType.SPARSE_VECTOR,
                             nmslib.DistType.FLOAT)

    for id, data in enumerate(read_sparse_data('sample_sparse_dataset.txt')):
        nmslib.addDataPoint(index, id, data)

    print 'We have added %d data points' % nmslib.getDataPointQty(index)

    for i in range(0,min(MAX_PRINT_QTY,nmslib.getDataPointQty(index))):
       print nmslib.getDataPoint(index,i)

    print 'Let\'s invoke the index-build process'

    index_param = ['NN=17', 'initIndexAttempts=3', 'indexThreadQty=4']
    query_time_param = ['initSearchAttempts=3']

    nmslib.createIndex(index, index_param)

    print 'The index is created'

    nmslib.setQueryTimeParams(index,query_time_param)

    print 'Query time parameters are set'

    print "Results for the freshly created index:"

    k = 3

    for idx, data in enumerate(read_sparse_data('sample_sparse_queryset.txt')):
        print idx, nmslib.knnQuery(index, k, data)

    nmslib.saveIndex(index, index_name)

    print "The index %s is saved" % index_name

    nmslib.freeIndex(index)
コード例 #13
0
ファイル: benchmark_script.py プロジェクト: zsaladin/n2
    def fit(self, X):
        self._index = nmslib.init(self._metric, [], "hnsw",
                                  nmslib.DataType.DENSE_VECTOR,
                                  nmslib.DistType.FLOAT)

        if os.path.exists(self._index_name):
            logging.debug("Loading index from file")
            nmslib.loadIndex(self._index, self._index_name)
        else:
            logging.debug("Create Index")
            for i, x in enumerate(X):
                self._index.addDataPoint(i, x)

            nmslib.createIndex(self._index, self._index_param)
            nmslib.saveIndex(self._index, self._index_name)

        nmslib.setQueryTimeParams(self._index, self._query_param)
コード例 #14
0
    def fit(self, X):
        import nmslib
        self._index = nmslib.init(self._nmslib_metric, [], self._method_name,
                                  nmslib.DataType.DENSE_VECTOR,
                                  nmslib.DistType.FLOAT)

        for i, x in enumerate(X):
            nmslib.addDataPoint(self._index, i, x.tolist())

        if os.path.exists(self._index_name):
            logging.debug("Loading index from file")
            nmslib.loadIndex(self._index, self._index_name)
        else:
            logging.debug("Create Index")
            nmslib.createIndex(self._index, self._index_param)
            if self._save_index:
                nmslib.saveIndex(self._index, self._index_name)

        nmslib.setQueryTimeParams(self._index, self._query_param)
コード例 #15
0
def bench_sparse_vector(batch=True):
    dim = 20000
    dataset = np.random.binomial(1, 0.01, size=(40000, dim))
    queryset = np.random.binomial(1, 0.009, size=(1000, dim))

    print 'dataset[0]:', [[i, v] for i, v in enumerate(dataset[0]) if v > 0]

    k = 3

    q0 = queryset[0]
    res = []
    for i in range(dataset.shape[0]):
        res.append([i, distance.cosine(q0, dataset[i,:])])
    res.sort(key=lambda x: x[1])
    print 'q0 res', res[:k]

    data_matrix = csr_matrix(dataset, dtype=np.float32)
    query_matrix = csr_matrix(queryset, dtype=np.float32)

    data_to_return = range(dataset.shape[0])
    with TimeIt('building MultiClusterIndex'):
        cp = snn.MultiClusterIndex(data_matrix, data_to_return)

    with TimeIt('knn search'):
        res = cp.search(query_matrix, k=k, return_distance=False)

    print res[:5]
    for i in res[0]:
        print int(i), distance.cosine(q0, dataset[int(i),:])

    #space_type = 'cosinesimil_sparse'
    space_type = 'cosinesimil_sparse_fast'
    space_param = []
    method_name = 'small_world_rand'
    index_name  = method_name + '_sparse.index'
    if os.path.isfile(index_name):
        os.remove(index_name)
    index = nmslib.init(space_type,
                        space_param,
                        method_name,
                        nmslib.DataType.SPARSE_VECTOR,
                        nmslib.DistType.FLOAT)

    if batch:
        with TimeIt('batch add'):
            positions = nmslib.addDataPointBatch(index, np.arange(len(dataset), dtype=np.int32), data_matrix)
        print 'positions', positions
    else:
        d = []
        q = []
        with TimeIt('preparing'):
            for data in dataset:
                d.append([[i, v] for i, v in enumerate(data) if v > 0])
            for data in queryset:
                q.append([[i, v] for i, v in enumerate(data) if v > 0])
        with TimeIt('adding points'):
            for id, data in enumerate(d):
                nmslib.addDataPoint(index, id, data)

    print 'Let\'s invoke the index-build process'

    index_param = ['NN=17', 'initIndexAttempts=3', 'indexThreadQty=4']
    query_time_param = ['initSearchAttempts=3']

    with TimeIt('building index'):
        nmslib.createIndex(index, index_param)

    print 'The index is created'

    nmslib.setQueryTimeParams(index,query_time_param)

    print 'Query time parameters are set'

    print "Results for the freshly created index:"

    with TimeIt('knn query'):
        if batch:
            num_threads = 10
            res = nmslib.knnQueryBatch(index, num_threads, k, query_matrix)
            for idx, v in enumerate(res):
                if idx < 5:
                    print idx, v
                if idx == 0:
                    for i in v:
                        print 'q0', i, distance.cosine(q0, dataset[i,:])
        else:
            for idx, data in enumerate(q):
                res = nmslib.knnQuery(index, k, data)
                if idx < 5:
                    print idx, res

    nmslib.saveIndex(index, index_name)

    print "The index %s is saved" % index_name

    nmslib.freeIndex(index)
コード例 #16
0
ファイル: test_nmslib.py プロジェクト: stevenqiulei/nmslib
def test_vector_fresh(fast=True):
    space_type = 'cosinesimil'
    space_param = []
    method_name = 'small_world_rand'
    index_name = method_name + '.index'
    if os.path.isfile(index_name):
        os.remove(index_name)
    index = nmslib.init(space_type, space_param, method_name,
                        nmslib.DataType.DENSE_VECTOR, nmslib.DistType.FLOAT)

    start = time.time()
    if fast:
        data = read_data_fast('sample_dataset.txt')
        print('data.shape', data.shape)
        positions = nmslib.addDataPointBatch(
            index, np.arange(len(data), dtype=np.int32), data)
    else:
        for id, data in enumerate(read_data('sample_dataset.txt')):
            pos = nmslib.addDataPoint(index, id, data)
            if id != pos:
                print('id %s != pos %s' % (id, pos))
                sys.exit(1)
    end = time.time()
    print('added data in %s secs' % (end - start))

    print('Let\'s print a few data entries')
    print('We have added %d data points' % nmslib.getDataPointQty(index))

    print("Distance between points (0,0) " +
          str(nmslib.getDistance(index, 0, 0)))
    print("Distance between points (1,1) " +
          str(nmslib.getDistance(index, 1, 1)))
    print("Distance between points (0,1) " +
          str(nmslib.getDistance(index, 0, 1)))
    print("Distance between points (1,0) " +
          str(nmslib.getDistance(index, 1, 0)))

    for i in range(0, min(MAX_PRINT_QTY, nmslib.getDataPointQty(index))):
        print(nmslib.getDataPoint(index, i))

    print('Let\'s invoke the index-build process')

    index_param = ['NN=17', 'initIndexAttempts=3', 'indexThreadQty=4']
    query_time_param = ['initSearchAttempts=3']

    nmslib.createIndex(index, index_param)

    print('The index is created')

    nmslib.setQueryTimeParams(index, query_time_param)

    print('Query time parameters are set')

    print("Results for the freshly created index:")

    k = 3

    start = time.time()
    if fast:
        num_threads = 10
        query = read_data_fast('sample_queryset.txt')
        res = nmslib.knnQueryBatch(index, num_threads, k, query)
        for idx, v in enumerate(res):
            print(idx, v)
    else:
        for idx, data in enumerate(read_data('sample_queryset.txt')):
            print(idx, nmslib.knnQuery(index, k, data))
    end = time.time()
    print('querying done in %s secs' % (end - start))

    nmslib.saveIndex(index, index_name)

    print("The index %s is saved" % index_name)

    nmslib.freeIndex(index)
コード例 #17
0
def test_vector_fresh(fast=True):
    space_type = 'cosinesimil'
    space_param = []
    method_name = 'small_world_rand'
    index_name  = method_name + '.index'
    if os.path.isfile(index_name):
        os.remove(index_name)
    index = nmslib.init(
                             space_type,
                             space_param,
                             method_name,
                             nmslib.DataType.DENSE_VECTOR,
                             nmslib.DistType.FLOAT)

    start = time.time()
    if fast:
        data = read_data_fast('sample_dataset.txt')
        print 'data.shape', data.shape
        positions = nmslib.addDataPointBatch(index, np.arange(len(data), dtype=np.int32), data)
    else:
        for id, data in enumerate(read_data('sample_dataset.txt')):
            pos = nmslib.addDataPoint(index, id, data)
	    if id != pos:
                print 'id %s != pos %s' % (id, pos)
		sys.exit(1)
    end = time.time()
    print 'added data in %s secs' % (end - start)

    print 'Let\'s print a few data entries'
    print 'We have added %d data points' % nmslib.getDataPointQty(index)

    for i in range(0,min(MAX_PRINT_QTY,nmslib.getDataPointQty(index))):
       print nmslib.getDataPoint(index, i)

    print 'Let\'s invoke the index-build process'

    index_param = ['NN=17', 'initIndexAttempts=3', 'indexThreadQty=4']
    query_time_param = ['initSearchAttempts=3']

    nmslib.createIndex(index, index_param)

    print 'The index is created'

    nmslib.setQueryTimeParams(index,query_time_param)

    print 'Query time parameters are set'

    print "Results for the freshly created index:"

    k = 3

    start = time.time()
    if fast:
        num_threads = 10
        query = read_data_fast('sample_queryset.txt')
        res = nmslib.knnQueryBatch(index, num_threads, k, query)
        for idx, v in enumerate(res):
            print idx, v
    else:
        for idx, data in enumerate(read_data('sample_queryset.txt')):
            print idx, nmslib.knnQuery(index, k, data)
    end = time.time()
    print 'querying done in %s secs' % (end - start)

    nmslib.saveIndex(index, index_name)

    print "The index %s is saved" % index_name

    nmslib.freeIndex(index)
コード例 #18
0
ファイル: sparse_bench.py プロジェクト: zhfzhmsra/ANN__nmslib
def bench_sparse_vector(batch=True):
    # delay importing these so CI can import module
    from scipy.sparse import csr_matrix
    from scipy.spatial import distance
    from pysparnn.cluster_index import MultiClusterIndex

    dim = 20000
    dataset = np.random.binomial(1, 0.01, size=(40000, dim))
    queryset = np.random.binomial(1, 0.009, size=(1000, dim))

    print('dataset[0]:', [[i, v] for i, v in enumerate(dataset[0]) if v > 0])

    k = 3

    q0 = queryset[0]
    res = []
    for i in range(dataset.shape[0]):
        res.append([i, distance.cosine(q0, dataset[i, :])])
    res.sort(key=lambda x: x[1])
    print('q0 res', res[:k])

    data_matrix = csr_matrix(dataset, dtype=np.float32)
    query_matrix = csr_matrix(queryset, dtype=np.float32)

    data_to_return = range(dataset.shape[0])

    with TimeIt('building MultiClusterIndex'):
        cp = MultiClusterIndex(data_matrix, data_to_return)

    with TimeIt('knn search'):
        res = cp.search(query_matrix, k=k, return_distance=False)

    print(res[:5])
    for i in res[0]:
        print(int(i), distance.cosine(q0, dataset[int(i), :]))

    #space_type = 'cosinesimil_sparse'
    space_type = 'cosinesimil_sparse_fast'
    space_param = []
    method_name = 'small_world_rand'
    index_name = method_name + '_sparse.index'
    if os.path.isfile(index_name):
        os.remove(index_name)
    index = nmslib.init(space_type, space_param, method_name,
                        nmslib.DataType.SPARSE_VECTOR, nmslib.DistType.FLOAT)

    if batch:
        with TimeIt('batch add'):
            positions = nmslib.addDataPointBatch(
                index, np.arange(len(dataset), dtype=np.int32), data_matrix)
        print('positions', positions)
    else:
        d = []
        q = []
        with TimeIt('preparing'):
            for data in dataset:
                d.append([[i, v] for i, v in enumerate(data) if v > 0])
            for data in queryset:
                q.append([[i, v] for i, v in enumerate(data) if v > 0])
        with TimeIt('adding points'):
            for id, data in enumerate(d):
                nmslib.addDataPoint(index, id, data)

    print('Let\'s invoke the index-build process')

    index_param = ['NN=17', 'efConstruction=50', 'indexThreadQty=4']
    query_time_param = ['efSearch=50']

    with TimeIt('building index'):
        nmslib.createIndex(index, index_param)

    print('The index is created')

    nmslib.setQueryTimeParams(index, query_time_param)

    print('Query time parameters are set')

    print("Results for the freshly created index:")

    with TimeIt('knn query'):
        if batch:
            num_threads = 10
            res = nmslib.knnQueryBatch(index, num_threads, k, query_matrix)
            for idx, v in enumerate(res):
                if idx < 5:
                    print(idx, v)
                if idx == 0:
                    for i in v:
                        print('q0', i, distance.cosine(q0, dataset[i, :]))
        else:
            for idx, data in enumerate(q):
                res = nmslib.knnQuery(index, k, data)
                if idx < 5:
                    print(idx, res)

    nmslib.saveIndex(index, index_name)

    print("The index %s is saved" % index_name)

    nmslib.freeIndex(index)