コード例 #1
0
def pure(datasets='mnist', attack='fgsm', model_name='lenet1'):
    tf.reset_default_graph()
    samples_path = '../adv_result/' + datasets + '/' + attack + '/' + model_name + '/pure'
    if not os.path.isdir(samples_path):
        os.makedirs(samples_path + '/train')
        os.makedirs(samples_path + '/test')

    samples_path_train = '../adv_result/' + datasets + '/' + attack + '/' + model_name + '/train_data'
    samples_path_test = '../adv_result/' + datasets + '/' + attack + '/' + model_name + '/test_data'

    sess, preds, x, y, model, feed_dict = model_load(datasets, model_name)

    [
        image_list_train, image_files_train, real_labels_train,
        predicted_labels_train
    ] = get_data_file(samples_path_train)
    [
        image_list_test, image_files_test, real_labels_test,
        predicted_labels_test
    ] = get_data_file(samples_path_test)

    #samples_train = np.asarray([preprocess_image_1(image.astype('float64')) for image in image_list_train])
    #samples_test = np.asarray([preprocess_image_1(image.astype('float64')) for image in image_list_test])
    samples_train = np.asarray(image_list_train)
    samples_test = np.asarray(image_list_test)

    probabilities_train = model_prediction(sess,
                                           x,
                                           preds,
                                           samples_train,
                                           feed=feed_dict)
    probabilities_test = model_prediction(sess,
                                          x,
                                          preds,
                                          samples_test,
                                          feed=feed_dict)

    for i in range(0, samples_train.shape[0]):
        if predicted_labels_train[i] == np.argmax(probabilities_train[i]):
            pure_train = samples_path + '/train/' + image_files_train[i]
            #imsave(pure_train, image_list_train[i])
            np.save(pure_train, image_list_train[i])

    for i in range(0, samples_test.shape[0]):
        if predicted_labels_test[i] == np.argmax(probabilities_test[i]):
            pure_test = samples_path + '/test/' + image_files_test[i]
            #imsave(pure_test, image_list_test[i])
            np.save(pure_test, image_list_test[i])
コード例 #2
0
def mr(datasets, model_name, attack, va, epoch=49):
    """
    :param datasets
    :param sample: inputs to attack
    :param target: the class want to generate
    :param nb_classes: number of output classes
    :return:
    """
    tf.reset_default_graph()
    X_train, Y_train, X_test, Y_test = get_data(datasets)
    input_shape, nb_classes = get_shape(datasets)
    sample = X_test
    sess, preds, x, y, model, feed_dict = model_load(datasets,
                                                     model_name,
                                                     epoch=epoch)
    probabilities = model_prediction(sess,
                                     x,
                                     preds,
                                     sample,
                                     feed=feed_dict,
                                     datasets=datasets)

    if sample.shape[0] == 1:
        current_class = np.argmax(probabilities)
    else:
        current_class = np.argmax(probabilities, axis=1)
    # only for correct:
    acc_pre_index = []
    for i in range(0, sample.shape[0]):
        if current_class[i] == np.argmax(Y_test[i]):
            acc_pre_index.append(i)
    print(len(acc_pre_index))
    sess.close()
    total = 0

    if attack == 'fgsm':

        samples_path = '../adv_result/' + datasets + '/' + attack + '/' + model_name + '/' + str(
            va)
        [image_list, image_files, real_labels,
         predicted_labels] = get_data_file(samples_path)
        num = len(image_list)
        return num / len(acc_pre_index)
    else:
        total = 0
        for tar in range(0, nb_classes):
            samples_path = '../adv_result/' + datasets + '/' + attack + '/' + model_name + '/' + str(
                va) + '_' + str(tar)
            [image_list, image_files, real_labels,
             predicted_labels] = get_data_file(samples_path)
            total += len(image_list)
        return total / len(acc_pre_index)
コード例 #3
0
ファイル: das_util.py プロジェクト: ClorisUcas/Qi_state
def get_mc_predictions(sess, x, preds, samples, nb_iter=50):
    """
    TODO
    :param model:
    :param X:
    :param nb_iter:
    :param batch_size:
    :return:
    """
    preds_mc = []
    for i in tqdm(range(nb_iter)):
        preds_mc.append(model_prediction(sess, x, preds, samples))

    return np.asarray(preds_mc)
コード例 #4
0
def bim(datasets,
        sample,
        model_name,
        store_path,
        step_size='0.3',
        batch_size=256,
        epoch=9):
    """
    :param datasets
    :param sample: inputs to attack
    :param target: the class want to generate
    :param nb_classes: number of output classes
    :return:
    """
    tf.reset_default_graph()
    X_train, Y_train, X_test, Y_test = get_data(datasets)
    input_shape, nb_classes = get_shape(datasets)

    print(epoch)
    sess, preds, x, y, model, feed_dict = model_load(datasets,
                                                     model_name,
                                                     epoch=epoch)

    ###########################################################################
    # Craft adversarial examples using the BIM approach
    ###########################################################################
    # Initialize the Basic Iterative Method (BIM) attack object and
    # graph
    '''
    if 'mnist' == datasets:
        #sample = np.asarray([np.asarray(imread(sample_path)).reshape(28,28,1)]).astype('float32')
        #sample = preprocess_image_1(sample)
        print('1')
    elif 'cifar10' == datasets:
        sample = np.asarray([np.asarray(imread(sample_path)).reshape(32,32,3)]).astype('float32')
        sample = preprocess_image_1(sample)
    elif 'svhn' == datasets:
        sample = np.asarray([np.asarray(imread(sample_path)).reshape(32,32,3)]).astype('float32')
        sample = preprocess_image_1(sample)
    #print(sample.shape)
    '''

    probabilities = model_prediction(sess, x, preds, sample, feed=feed_dict)

    if sample.shape[0] == 1:
        current_class = np.argmax(probabilities)
    else:
        current_class = np.argmax(probabilities, axis=1)

    if not os.path.exists(store_path):
        os.makedirs(store_path)

    # only for correct:
    acc_pre_index = []
    for i in range(0, sample.shape[0]):
        if current_class[i] == np.argmax(Y_test[i]):
            acc_pre_index.append(i)

    sample_acc = np.zeros(shape=(len(acc_pre_index), input_shape[1],
                                 input_shape[2], input_shape[3]),
                          dtype='float32')
    probabilities_acc = np.zeros(shape=(len(acc_pre_index), nb_classes),
                                 dtype='float32')
    current_class_acc = np.zeros(shape=(len(acc_pre_index)), dtype=int)

    for i in range(0, len(acc_pre_index)):
        sample_acc[i] = sample[acc_pre_index[i]]
        probabilities_acc[i] = probabilities[acc_pre_index[i]]
        current_class_acc[i] = current_class[acc_pre_index[i]]
    print('Start generating adv. example')
    #print(float(step_size))
    if 'mnist' == datasets:
        bim_params = {
            'eps': float(step_size),
            'eps_iter': float(step_size) / 6,
            'clip_min': 0.,
            'clip_max': 1.
        }
    elif 'cifar10' == datasets:
        bim_params = {
            'eps': float(step_size),
            'eps_iter': float(step_size) / 6,
            'clip_min': 0.,
            'clip_max': 1.
        }
    elif 'svhn' == datasets:
        bim_params = {
            'eps': float(step_size),
            'eps_iter': float(step_size) / 6,
            'clip_min': 0.,
            'clip_max': 1.
        }
    bim = BasicIterativeMethod(model, sess=sess)
    adv_x = bim.generate(x, **bim_params)

    nb_batches = int(math.ceil(float(sample_acc.shape[0]) / batch_size))
    suc = 0
    for batch in range(nb_batches):
        #start, end = batch_indices(batch, sample_acc.shape[0], batch_size)
        print(batch)
        start = batch * batch_size
        end = (batch + 1) * batch_size
        if end > sample_acc.shape[0]:
            end = sample_acc.shape[0]
        adv = sess.run(adv_x,
                       feed_dict={
                           x: sample_acc[start:end],
                           y: probabilities_acc[start:end]
                       })

        #adv_img_deprocessed = deprocess_image_1(adv)
        #adv:float 0-1 numpy.save("filename.npy",a)

        # Check if success was achieved
        #probabilities = model_prediction(sess, x, preds, sample, feed=feed_dict)
        new_class_label = model_argmax(
            sess, x, preds, adv,
            feed=feed_dict)  # Predicted class of the generated adversary
        for i in range(0, len(new_class_label)):
            j = batch * batch_size + i
            if new_class_label[i] != current_class_acc[j]:
                suc += 1
                path = store_path + '/' + str(acc_pre_index[j]) + '_' + str(
                    time.time() * 1000) + '_' + str(
                        current_class_acc[j]) + '_' + str(new_class_label[i])
                np.save(path, adv[i])
                # adv_img_deprocessed = deprocess_image_1(adv[i:i+1])
                # adv_img_deprocessed=adv_img_deprocessed.reshape(adv_img_deprocessed.shape[1],adv_img_deprocessed.shape[2])
                # path =  store_path + '/' + str(acc_pre_index[j]) + '_' + str(time.time()*1000) + '_' + str(current_class_acc[j]) + '_' + str(new_class_label[i])+'.png'
                #print(adv[i].shape)
                # imsave(path, adv_img_deprocessed)
    # Close TF session
    sess.close()

    return suc, len(acc_pre_index)
コード例 #5
0
def jsma(datasets,
         sample,
         model_name,
         target,
         store_path,
         gamma=0.1,
         start=0,
         end=10000,
         batch_size=32,
         epoch=9,
         mu=False,
         mu_var='gf',
         de=False,
         attack='fgsm'):
    """
    the Jacobian-based saliency map approach (JSMA)
    :param datasets
    :param sample: inputs to attack
    :param target: the class want to generate
    :param nb_classes: number of output classes
    :return:
    """
    tf.reset_default_graph()
    X_train, Y_train, X_test, Y_test = get_data(datasets)

    # sess, preds, x, y, model, feed_dict = model_load(datasets, model_name, epoch=epoch)
    sess, preds, x, y, model, feed_dict = model_load(datasets,
                                                     model_name,
                                                     epoch=epoch,
                                                     mu=mu,
                                                     mu_var=mu_var,
                                                     de=de,
                                                     attack=attack)

    ###########################################################################
    # Craft adversarial examples using the Jacobian-based saliency map approach
    ###########################################################################
    '''
    if 'mnist' == datasets:
        sample = np.asarray([np.asarray(imread(sample_path)).reshape(28,28,1)]).astype('float32')
        sample = preprocess_image_1(sample)
    elif 'cifar10' == datasets:
        sample = np.asarray([np.asarray(imread(sample_path)).reshape(32,32,3)]).astype('float32')
        sample = preprocess_image_1(sample)
    elif 'svhn' == datasets:
        sample = np.asarray([np.asarray(imread(sample_path)).reshape(32,32,3)]).astype('float32')
        sample = preprocess_image_1(sample)
   '''

    input_shape, nb_classes = get_shape(datasets)
    sample = sample[start:end]
    probabilities = model_prediction(sess, x, preds, sample, feed=feed_dict)
    current_class = []
    for i in range(0, probabilities.shape[0]):
        current_class.append(np.argmax(probabilities[i]))

    if not os.path.exists(store_path):
        os.makedirs(store_path)
    '''
    if target == current_class:
        return 'The target is equal to its original class'
    elif target >= nb_classes or target < 0:
        return 'The target is out of range'
    '''

    #only for correct:
    Y_test = Y_test[start:end]
    acc_pre_index = []
    for i in range(0, sample.shape[0]):
        if current_class[i] == np.argmax(Y_test[i]):
            acc_pre_index.append(i)

    print('Start generating adv. example for target class %i' % target)
    sample_acc = np.zeros(shape=(len(acc_pre_index), input_shape[1],
                                 input_shape[2], input_shape[3]),
                          dtype='float')
    current_class_acc = np.zeros(shape=(len(acc_pre_index)), dtype=int)
    for i in range(0, len(acc_pre_index)):
        sample_acc[i] = sample[acc_pre_index[i]]
        current_class_acc[i] = current_class[acc_pre_index[i]]
    #print('current_class_acc',current_class_acc)
    # Instantiate a SaliencyMapMethod attack object
    jsma = SaliencyMapMethod(model, back='tf', sess=sess)
    jsma_params = {
        'theta': 1.,
        'gamma': gamma,
        'clip_min': 0.,
        'clip_max': 1.,
        'y_target': None
    }

    # This call runs the Jacobian-based saliency map approach
    one_hot_target = np.zeros((1, nb_classes), dtype=np.float32)
    one_hot_target[0, target] = 1
    jsma_params['y_target'] = one_hot_target

    suc = 0
    nb_batches = int(math.ceil(float(sample_acc.shape[0]) / batch_size))
    for batch in range(nb_batches):
        #print(batch)
        start_batch = batch * batch_size
        end_batch = (batch + 1) * batch_size
        if end_batch > sample_acc.shape[0]:
            end_batch = sample_acc.shape[0]
        adv_inputs = sample_acc[start_batch:end_batch]
        for j in range(start_batch, end_batch):
            if current_class_acc[j] != target:
                adv_input = adv_inputs[j - start_batch].reshape(
                    1, input_shape[1], input_shape[2], input_shape[3])
                adv = jsma.generate_np(adv_input, **jsma_params)
                new_class_labels = model_argmax(sess,
                                                x,
                                                preds,
                                                adv,
                                                feed=feed_dict)
                res = int(new_class_labels == target)
                if res == 1:
                    adv = adv.reshape(adv.shape[1], adv.shape[2], adv.shape[3])
                    #adv_img_deprocessed = deprocess_image_1(adv)
                    #adv_img_deprocessed=adv_img_deprocessed.reshape(adv_img_deprocessed.shape[1],adv_img_deprocessed.shape[2])
                    suc += 1
                    path = store_path + '/' + str(
                        start + acc_pre_index[j]
                    ) + '_' + str(time.time() * 1000) + '_' + str(
                        current_class_acc[j]) + '_' + str(new_class_labels)
                    #path=store_path + '/'  + str(j)+ '_'+ str(current_class_acc[j]) +'.png'
                    #imsave(path, adv_img_deprocessed)
                    np.save(path, adv)
                    #print(adv.shape)

    # Close TF session
    sess.close()
    return suc, len(acc_pre_index)
コード例 #6
0
ファイル: choose_mu.py プロジェクト: asplos2020/DRTest
def choose_mu(attack='fgsm',
              datasets='mnist',
              total_num=10000,
              model_name='lenet1',
              mu_var='gf'):
    tf.reset_default_graph()
    tf.set_random_seed(1234)
    config = tf.ConfigProto()
    #config.gpu_options.per_process_gpu_memory_fraction = 0.7
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)
    X_train, Y_train, X_test, Y_test = get_data(datasets)
    sess, preds, x, y, model, feed_dict = model_load(datasets,
                                                     model_name,
                                                     de=False,
                                                     epoch=9,
                                                     attack='fgsm',
                                                     mu=True,
                                                     mu_var=mu_var)
    pre = model_prediction(sess,
                           x,
                           preds,
                           X_test,
                           feed=feed_dict,
                           datasets=datasets)
    acc_pre_index = []
    for i in range(0, pre.shape[0]):
        if np.argmax(pre[i]) == np.argmax(Y_test[i]):
            acc_pre_index.append(i)
    input_shape, nb_classes = get_shape(datasets)

    train_path = '../adv_result/' + datasets + '/' + attack + '/' + model_name
    store_path_train = '../adv_result/mu_' + datasets + '/' + mu_var + '/' + attack + '/' + model_name + '/train_data'
    store_path_test = '../adv_result/mu_' + datasets + '/' + mu_var + '/' + attack + '/' + model_name + '/test_data'
    if not os.path.isdir(store_path_train):
        os.makedirs(store_path_train)
    if not os.path.isdir(store_path_test):
        os.makedirs(store_path_test)

    if datasets == 'cifar10':
        if attack == 'fgsm':
            step_size = [0.01, 0.02, 0.03]

            for s in range(0, len(step_size)):

                samples_path = train_path + '/' + str(step_size[s])
                [image_list, image_files, real_labels,
                 predicted_labels] = get_data_file(samples_path)
                samples_adv = np.asarray(image_list)
                result = model_prediction(sess,
                                          x,
                                          preds,
                                          samples_adv,
                                          feed=feed_dict,
                                          datasets=datasets)
                ind_file = []
                for i in range(len(image_list)):
                    ind_file.append(image_files[i].split('_')[0])
                ind = []
                for i in range(len(image_list)):
                    nn = int(image_files[i].split('_')[0])
                    if (nn in acc_pre_index) and (predicted_labels[i]
                                                  == np.argmax(result[i])):
                        ind.append(image_files[i].split('_')[0])

                for i in range(0, int(math.ceil(X_test.shape[0] / 6))):
                    if str(i) in ind:
                        i_index = ind_file.index(str(i))
                        image_files[i_index] = str(
                            step_size[s]) + '_' + image_files[i_index]

                        test_p = store_path_test + '/' + image_files[i_index]
                        np.save(test_p, image_list[i_index])
                for i in range(int(math.ceil(X_test.shape[0] / 6)),
                               X_test.shape[0]):
                    if str(i) in ind:
                        i_index = ind_file.index(str(i))
                        image_files[i_index] = str(
                            step_size[s]) + '_' + image_files[i_index]

                        train_p = store_path_train + '/' + image_files[i_index]
                        np.save(train_p, image_list[i_index])

        if attack == 'cw':
            targets = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
            cw_ini_cons = [0.1, 0.2, 0.3]
            for t in range(0, len(targets)):
                for c in range(0, len(cw_ini_cons)):

                    samples_path = train_path + '/' + str(
                        cw_ini_cons[c]) + '_' + str(targets[t])
                    [image_list, image_files, real_labels,
                     predicted_labels] = get_data_file(samples_path)
                    samples_adv = np.asarray(image_list)
                    result = model_prediction(sess,
                                              x,
                                              preds,
                                              samples_adv,
                                              feed=feed_dict,
                                              datasets=datasets)
                    ind_file = []
                    for i in range(len(image_list)):
                        ind_file.append(image_files[i].split('_')[0])
                    ind = []
                    for i in range(len(image_list)):
                        nn = int(image_files[i].split('_')[0])
                        if (nn in acc_pre_index) and (predicted_labels[i]
                                                      == np.argmax(result[i])):
                            ind.append(image_files[i].split('_')[0])

                    for i in range(1000 * t,
                                   1000 * t + int(math.ceil(1000 / 6))):
                        if str(i) in ind:
                            i_index = ind_file.index(str(i))
                            image_files[i_index] = str(
                                cw_ini_cons[c]) + '_' + image_files[i_index]

                            test_p = store_path_test + '/' + image_files[
                                i_index]
                            np.save(test_p, image_list[i_index])

                    for i in range(1000 * t + int(math.ceil(1000 / 6), 1000 *
                                                  (t + 1))):
                        if str(i) in ind:
                            i_index = ind_file.index(str(i))
                            image_files[i_index] = str(
                                cw_ini_cons[c]) + '_' + image_files[i_index]

                            train_p = store_path_train + '/' + image_files[
                                i_index]
                            np.save(train_p, image_list[i_index])

        if attack == 'jsma':
            targets = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
            jsma_var = [0.09, 0.1, 0.11]
            for t in range(0, len(targets)):
                for c in range(0, len(jsma_var)):

                    samples_path = train_path + '/' + str(
                        jsma_var[c]) + '_' + str(targets[t])
                    [image_list, image_files, real_labels,
                     predicted_labels] = get_data_file(samples_path)
                    samples_adv = np.asarray(image_list)
                    result = model_prediction(sess,
                                              x,
                                              preds,
                                              samples_adv,
                                              feed=feed_dict,
                                              datasets=datasets)
                    ind_file = []
                    for i in range(len(image_list)):
                        ind_file.append(image_files[i].split('_')[0])
                    ind = []
                    for i in range(len(image_list)):
                        nn = int(image_files[i].split('_')[0])
                        if (nn in acc_pre_index) and (predicted_labels[i]
                                                      == np.argmax(result[i])):
                            ind.append(image_files[i].split('_')[0])

                    for i in range(1000 * t,
                                   1000 * t + int(math.ceil(1000 / 6))):
                        if str(i) in ind:
                            i_index = ind_file.index(str(i))
                            image_files[i_index] = str(
                                jsma_var[c]) + '_' + image_files[i_index]

                            test_p = store_path_test + '/' + image_files[
                                i_index]
                            np.save(test_p, image_list[i_index])

                    for i in range(1000 * t + int(math.ceil(1000 / 6)),
                                   1000 * (t + 1)):
                        if str(i) in ind:
                            i_index = ind_file.index(str(i))
                            image_files[i_index] = str(
                                jsma_var[c]) + '_' + image_files[i_index]

                            train_p = store_path_train + '/' + image_files[
                                i_index]
                            np.save(train_p, image_list[i_index])

    if datasets == 'mnist':
        if attack == 'fgsm':
            step_size = [0.2, 0.3, 0.4]

            for s in range(0, len(step_size)):

                samples_path = train_path + '/' + str(step_size[s])
                [image_list, image_files, real_labels,
                 predicted_labels] = get_data_file(samples_path)
                samples_adv = np.asarray(image_list)
                result = model_prediction(sess,
                                          x,
                                          preds,
                                          samples_adv,
                                          feed=feed_dict,
                                          datasets=datasets)
                ind_file = []
                for i in range(len(image_list)):
                    ind_file.append(image_files[i].split('_')[0])
                ind = []
                for i in range(len(image_list)):
                    nn = int(image_files[i].split('_')[0])
                    if (nn in acc_pre_index) and (predicted_labels[i]
                                                  == np.argmax(result[i])):
                        ind.append(image_files[i].split('_')[0])

                for i in range(0, int(math.ceil(X_test.shape[0] / 7))):
                    if str(i) in ind:
                        i_index = ind_file.index(str(i))
                        image_files[i_index] = str(
                            step_size[s]) + '_' + image_files[i_index]

                        test_p = store_path_test + '/' + image_files[i_index]
                        np.save(test_p, image_list[i_index])
                for i in range(int(math.ceil(X_test.shape[0] / 7)),
                               X_test.shape[0]):
                    if str(i) in ind:
                        i_index = ind_file.index(str(i))
                        image_files[i_index] = str(
                            step_size[s]) + '_' + image_files[i_index]

                        train_p = store_path_train + '/' + image_files[i_index]
                        np.save(train_p, image_list[i_index])

        if attack == 'cw':
            targets = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
            cw_ini_cons = [9, 10, 11]
            for t in range(0, len(targets)):
                for c in range(0, len(cw_ini_cons)):

                    samples_path = train_path + '/' + str(
                        cw_ini_cons[c]) + '_' + str(targets[t])
                    [image_list, image_files, real_labels,
                     predicted_labels] = get_data_file(samples_path)
                    samples_adv = np.asarray(image_list)
                    result = model_prediction(sess,
                                              x,
                                              preds,
                                              samples_adv,
                                              feed=feed_dict,
                                              datasets=datasets)
                    ind_file = []
                    for i in range(len(image_list)):
                        ind_file.append(image_files[i].split('_')[0])
                    ind = []
                    for i in range(len(image_list)):
                        nn = int(image_files[i].split('_')[0])
                        if (nn in acc_pre_index) and (predicted_labels[i]
                                                      == np.argmax(result[i])):
                            ind.append(image_files[i].split('_')[0])

                    for i in range(1000 * t,
                                   1000 * t + int(math.ceil(1000 / 7))):
                        if str(i) in ind:
                            i_index = ind_file.index(str(i))
                            image_files[i_index] = str(
                                cw_ini_cons[c]) + '_' + image_files[i_index]

                            test_p = store_path_test + '/' + image_files[
                                i_index]
                            np.save(test_p, image_list[i_index])

                    for i in range(1000 * t + int(math.ceil(1000 / 7)),
                                   1000 * (t + 1)):
                        if str(i) in ind:
                            i_index = ind_file.index(str(i))
                            image_files[i_index] = str(
                                cw_ini_cons[c]) + '_' + image_files[i_index]

                            train_p = store_path_train + '/' + image_files[
                                i_index]
                            np.save(train_p, image_list[i_index])

        if attack == 'jsma':
            targets = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
            jsma_var = [0.09, 0.1, 0.11]
            for t in range(0, len(targets)):
                for c in range(0, len(jsma_var)):

                    samples_path = train_path + '/' + str(
                        jsma_var[c]) + '_' + str(targets[t])
                    [image_list, image_files, real_labels,
                     predicted_labels] = get_data_file(samples_path)
                    samples_adv = np.asarray(image_list)
                    result = model_prediction(sess,
                                              x,
                                              preds,
                                              samples_adv,
                                              feed=feed_dict,
                                              datasets=datasets)
                    ind_file = []
                    for i in range(len(image_list)):
                        ind_file.append(image_files[i].split('_')[0])
                    ind = []
                    for i in range(len(image_list)):
                        nn = int(image_files[i].split('_')[0])
                        if (nn in acc_pre_index) and (predicted_labels[i]
                                                      == np.argmax(result[i])):
                            ind.append(image_files[i].split('_')[0])

                    for i in range(1000 * t,
                                   1000 * t + int(math.ceil(1000 / 7))):
                        if str(i) in ind:
                            i_index = ind_file.index(str(i))
                            image_files[i_index] = str(
                                jsma_var[c]) + '_' + image_files[i_index]

                            test_p = store_path_test + '/' + image_files[
                                i_index]
                            np.save(test_p, image_list[i_index])

                    for i in range(1000 * t + int(math.ceil(1000 / 7)),
                                   1000 * (t + 1)):
                        if str(i) in ind:
                            i_index = ind_file.index(str(i))
                            image_files[i_index] = str(
                                jsma_var[c]) + '_' + image_files[i_index]

                            train_p = store_path_train + '/' + image_files[
                                i_index]
                            np.save(train_p, image_list[i_index])
コード例 #7
0
def blackbox(datasets,
             sample,
             model_name,
             submodel_name,
             store_path,
             step_size=0.3,
             batch_size=256):
    """
    the black-box attack from arxiv.org/abs/1602.02697
    :param datasets
    :param sample: inputs to attack
    :param target: the class want to generate
    :param nb_classes: number of output classes
    :return:
    """
    # Simulate the black-box model locally
    # You could replace this by a remote labeling API for instance
    print("Preparing the black-box model.")
    tf.reset_default_graph()
    X_train, Y_train, X_test, Y_test = get_data(datasets)
    input_shape, nb_classes = get_shape(datasets)
    sess, bbox_preds, x, y, model, feed_dict = model_load(datasets, model_name)

    # Train substitute using method from https://arxiv.org/abs/1602.02697
    print("Preparing the substitute model.")
    model_sub, preds_sub = sub_model_load(sess, datasets, submodel_name,
                                          model_name)

    ###########################################################################
    # Craft adversarial examples using the Blackbox approach
    ###########################################################################
    # Initialize the Fast Gradient Sign Method (FGSM) attack object.
    '''
    if 'mnist' == datasets:
        sample = np.asarray([np.asarray(imread(sample_path)).reshape(28,28,1)]).astype('float32')
        sample = preprocess_image_1(sample)
    elif 'cifar10' == datasets:
        sample = np.asarray([np.asarray(imread(sample_path)).reshape(32,32,3)]).astype('float32')
        sample = preprocess_image_1(sample)
    elif 'svhn' == datasets:
        sample = np.asarray([np.asarray(imread(sample_path)).reshape(32,32,3)]).astype('float32')
        sample = preprocess_image_1(sample)
    '''

    probabilities = model_prediction(sess, x, model(x), sample, feed=feed_dict)
    if sample.shape[0] == 1:
        current_class = np.argmax(probabilities)
    else:
        current_class = np.argmax(probabilities, axis=1)

    if not os.path.exists(store_path):
        os.makedirs(store_path)

    # only for correct:
    acc_pre_index = []
    for i in range(0, sample.shape[0]):
        if current_class[i] == np.argmax(Y_test[i]):
            acc_pre_index.append(i)

    sample_acc = np.zeros(shape=(len(acc_pre_index), input_shape[1],
                                 input_shape[2], input_shape[3]),
                          dtype='float32')
    probabilities_acc = np.zeros(shape=(len(acc_pre_index), nb_classes),
                                 dtype='float32')
    current_class_acc = np.zeros(shape=(len(acc_pre_index)), dtype=int)

    for i in range(0, len(acc_pre_index)):
        sample_acc[i] = sample[acc_pre_index[i]]
        probabilities_acc[i] = probabilities[acc_pre_index[i]]
        current_class_acc[i] = current_class[acc_pre_index[i]]

    if datasets == 'mnist':
        fgsm_par = {
            'eps': step_size,
            'ord': np.inf,
            'clip_min': 0.,
            'clip_max': 1.
        }
    elif 'cifar10' == datasets:
        fgsm_par = {
            'eps': step_size,
            'ord': np.inf,
            'clip_min': 0.,
            'clip_max': 1.
        }
    elif 'svhn' == datasets:
        fgsm_par = {
            'eps': step_size,
            'ord': np.inf,
            'clip_min': 0.,
            'clip_max': 1.
        }
    fgsm = FastGradientMethod(model_sub, sess=sess)

    # Craft adversarial examples using the substitute
    x_adv_sub = fgsm.generate(x, **fgsm_par)

    nb_batches = int(math.ceil(float(sample_acc.shape[0]) / batch_size))
    suc = 0
    for batch in range(nb_batches):
        #start, end = batch_indices(batch, sample_acc.shape[0], batch_size)
        print(batch)
        start = batch * batch_size
        end = (batch + 1) * batch_size
        if end > sample_acc.shape[0]:
            end = sample_acc.shape[0]
        adv = sess.run(x_adv_sub,
                       feed_dict={
                           x: sample_acc[start:end],
                           y: probabilities_acc[start:end]
                       })
        adv_img_deprocessed = deprocess_image_1(adv)

        # Check if success was achieved
        #probabilities = model_prediction(sess, x, preds, sample, feed=feed_dict)
        new_class_label = model_argmax(
            sess, x, model(x), adv,
            feed=feed_dict)  # Predicted class of the generated adversary
        for i in range(0, len(new_class_label)):
            j = batch * batch_size + i
            if new_class_label[i] != current_class_acc[j]:
                suc += 1
                path = store_path + '/' + str(j) + '_' + str(
                    time.time() * 1000) + '_' + str(
                        current_class_acc[j]) + '_' + str(
                            new_class_label[i]) + '.png'
                imsave(path, adv_img_deprocessed[i])
    # Close TF session
    sess.close()

    return suc, len(acc_pre_index)
    '''
コード例 #8
0
def cw(datasets,
       sample,
       model_name,
       target,
       store_path,
       ini_con=10,
       start=0,
       end=10000,
       batch_size=32,
       epoch=9,
       mu=False,
       mu_var='gf',
       de=False,
       attack='fgsm'):
    """
    Carlini and Wagner's attack
    :param datasets
    :param sample: inputs to attack
    :param target: the class want to generate
    :param nb_classes: number of output classes
    :return:
    """
    tf.reset_default_graph()
    X_train, Y_train, X_test, Y_test = get_data(datasets)

    # sess, preds, x, y, model, feed_dict = model_load(datasets, model_name, epoch=epoch)
    sess, preds, x, y, model, feed_dict = model_load(datasets,
                                                     model_name,
                                                     epoch=epoch,
                                                     mu=mu,
                                                     mu_var=mu_var,
                                                     de=de,
                                                     attack=attack)

    print('load successfule')
    ###########################################################################
    # Craft adversarial examples using Carlini and Wagner's approach
    ###########################################################################
    '''
    if 'mnist' == datasets:
        sample = np.asarray([np.asarray(imread(sample_path)).reshape(28, 28, 1)]).astype('float32')
        sample = preprocess_image_1(sample)
    elif 'cifar10' == datasets:
        sample = np.asarray([np.asarray(imread(sample_path)).reshape(32, 32, 3)]).astype('float32')
        sample = preprocess_image_1(sample)
    elif 'svhn' == datasets:
        sample = np.asarray([np.asarray(imread(sample_path)).reshape(32,32,3)]).astype('float32')
        sample = preprocess_image_1(sample)
    '''
    input_shape, nb_classes = get_shape(datasets)
    sample = sample[start:end]

    probabilities = model_prediction(sess, x, preds, sample, feed=feed_dict)
    current_class = []
    for i in range(0, probabilities.shape[0]):
        current_class.append(np.argmax(probabilities[i]))
    if not os.path.exists(store_path):
        os.makedirs(store_path)
    '''
    if target == current_class:
        return 'The target is equal to its original class'
    elif target >= nb_classes or target < 0:
        return 'The target is out of range'
    '''
    #only for correct:
    Y_test = Y_test[start:end]
    #sample=sample[start:end]
    acc_pre_index = []
    for i in range(0, sample.shape[0]):
        if current_class[i] == np.argmax(Y_test[i]):
            acc_pre_index.append(i)
    print('current_class', current_class)

    print('Start generating adv. example for target class %i' % target)
    # Instantiate a CW attack object
    sample_acc = np.zeros(shape=(len(acc_pre_index), input_shape[1],
                                 input_shape[2], input_shape[3]),
                          dtype='float')
    current_class_acc = np.zeros(shape=(len(acc_pre_index)), dtype=int)
    for i in range(0, len(acc_pre_index)):
        sample_acc[i] = sample[acc_pre_index[i]]
        current_class_acc[i] = current_class[acc_pre_index[i]]
    print('current_class_acc', current_class_acc)
    cw = CarliniWagnerL2(model, back='tf', sess=sess)

    one_hot = np.zeros((1, nb_classes), dtype=np.float32)
    one_hot[0, target] = 1

    adv_ys = one_hot
    yname = "y_target"
    if 'mnist' == datasets:
        cw_params = {
            'binary_search_steps': 1,
            yname: adv_ys,
            'max_iterations': 1000,
            'learning_rate': 0.1,
            'batch_size': 1,
            'initial_const': ini_con
        }
    elif 'cifar10' == datasets:
        cw_params = {
            'binary_search_steps': 1,
            yname: adv_ys,
            'max_iterations': 1000,
            'learning_rate': 0.1,
            'batch_size': 1,
            'initial_const': ini_con
        }

    suc = 0
    nb_batches = int(math.ceil(float(sample_acc.shape[0]) / batch_size))
    for batch in range(nb_batches):

        start_batch = batch * batch_size
        end_batch = (batch + 1) * batch_size
        if end_batch > sample_acc.shape[0]:
            end_batch = sample_acc.shape[0]
        adv_inputs = sample_acc[start_batch:end_batch]
        for j in range(start_batch, end_batch):
            if current_class_acc[j] != target:
                adv_input = adv_inputs[j - start_batch].reshape(
                    1, input_shape[1], input_shape[2], input_shape[3])
                adv = cw.generate_np(adv_input, **cw_params)
                #print(adv.shape)
                #print(adv)
                new_class_labels = model_argmax(sess,
                                                x,
                                                preds,
                                                adv,
                                                feed=feed_dict)
                res = int(new_class_labels == target)
                if res == 1:
                    adv = adv.reshape(adv.shape[1], adv.shape[2], adv.shape[3])
                    #adv_img_deprocessed = deprocess_image_1(adv)
                    #adv_img_deprocessed=adv_img_deprocessed.reshape(adv_img_deprocessed.shape[1],adv_img_deprocessed.shape[2])
                    suc += 1
                    path = store_path + '/' + str(
                        start + acc_pre_index[j]
                    ) + '_' + str(time.time() * 1000) + '_' + str(
                        current_class_acc[j]) + '_' + str(new_class_labels)
                    #path = store_path + '/' + str(start+acc_pre_index[j]) + '_' + str(time.time()*1000) + '_' + str(current_class_acc[j]) + '_' + str(new_class_labels)+'.png'
                    #path=store_path + '/'  + str(j)+ '_'+ str(current_class_acc[j]) +'.png'
                    #imsave(path, adv)
                    np.save(path, adv)
                    #print(adv.shape)

    sess.close()
    return suc, len(acc_pre_index)
コード例 #9
0
ファイル: cos.py プロジェクト: asplos2020/DRTest
def cos(datasets, model, de_model, attack='fgsm', epoch=49, de_epoch=49):

    tf.reset_default_graph()
    """
    :param datasets
    :param model
    :param samples_path
    :return:
    """
    # Object used to keep track of (and return) key accuracies

    print("load defense model.")
    sess, preds, x, y, model, feed_dict = model_load(datasets,
                                                     model,
                                                     epoch=epoch)

    X_train, Y_train, X_test, Y_test = get_data(datasets)
    input_shape, nb_classes = get_shape(datasets)
    feed_dict_de = None
    #result_nor=sess.run(preds, feed_dict={x:X_test})
    result_nor = model_prediction(sess,
                                  x,
                                  preds,
                                  X_test,
                                  feed=feed_dict,
                                  datasets=datasets)
    #print(result_nor)
    #print(model)
    #print(get_model_dict())

    tf.reset_default_graph()
    sess, preds_de, x, y, model_de, feed_dict = model_load(datasets,
                                                           de_model,
                                                           de=True,
                                                           attack=attack,
                                                           epoch=de_epoch)
    #result_de=sess.run(preds_de, feed_dict={x:X_test})
    result_de = model_prediction(sess,
                                 x,
                                 preds_de,
                                 X_test,
                                 feed=feed_dict,
                                 datasets=datasets)
    #print(result_de)
    # print('average confidence of adversarial class %.4f' %(result))
    result = 0
    num = 0
    js = 0.
    for i in range(Y_test.shape[0]):
        if (np.argmax(Y_test[i]) == np.argmax(result_nor[i])) and (np.argmax(
                Y_test[i]) == np.argmax(result_de[i])):
            num += 1
            p = result_nor[i]
            q = result_de[i]
            M = (p + q) / 2
            js = js + 0.5 * scipy.stats.entropy(
                p, M) + 0.5 * scipy.stats.entropy(q, M)
    # Close TF session
    result = js / num
    print("JS divergence: ", result)
    sess.close()

    return result
コード例 #10
0
ファイル: ccv.py プロジェクト: asplos2020/DRTest
def ccv(datasets='mnist',
        model='lenet1',
        de_model='lenet1',
        attack='fgsm',
        epoch=49,
        de_epoch=49):
    """
    :param datasets
    :param model
    :param samples_path
    :return:
    """
    tf.reset_default_graph()
    # Object used to keep track of (and return) key accuracies
    print("load defense model.")

    sess, preds, x, y, model, feed_dict = model_load(datasets,
                                                     model,
                                                     epoch=epoch)
    X_train, Y_train, X_test, Y_test = get_data(datasets)
    input_shape, nb_classes = get_shape(datasets)
    feed_dict_de = None

    result_nor = model_prediction(sess,
                                  x,
                                  preds,
                                  X_test,
                                  feed=feed_dict,
                                  datasets=datasets)

    #result_nor=sess.run(preds, feed_dict={x:X_test[0:1000]})

    #print(result_nor)
    #print(model)
    #print(get_model_dict())

    tf.reset_default_graph()
    sess, preds_de, x, y, model_de, feed_dict = model_load(datasets,
                                                           de_model,
                                                           True,
                                                           attack=attack,
                                                           epoch=de_epoch)

    #result_de=sess.run(preds_de, feed_dict={x:X_test[0:1000]})
    result_de = model_prediction(sess,
                                 x,
                                 preds_de,
                                 X_test,
                                 feed=feed_dict,
                                 datasets=datasets)

    #print(result_de)
    # print('average confidence of adversarial class %.4f' %(result))
    result = 0
    num = 0

    for i in range(Y_test.shape[0]):
        if (np.argmax(Y_test[i]) == np.argmax(result_nor[i])) and (np.argmax(
                Y_test[i]) == np.argmax(result_de[i])):
            num += 1
            result += abs(result_nor[i][np.argmax(Y_test[i])] -
                          result_de[i][np.argmax(Y_test[i])])
    # Close TF session
    print(result / num)

    sess.close()

    return result / num