コード例 #1
0
 def test_conections(self):
     genome = GenomeMock([(2, 4, 0, True), (1, 3, 0, True), (2, 3, 0, True),
                          (1, 4, 0, True)], 2, 2)
     nn = NeuralNetwork()
     nn.generate_network(genome)
     self.assertEqual(nn._genome.get_connections(), [(1, 3, 0, True),
                                                     (1, 4, 0, True),
                                                     (2, 3, 0, True),
                                                     (2, 4, 0, True)])
コード例 #2
0
 def test_connections_creation(self):
     genome = GenomeMock([(2, 4, 0, True), (1, 3, -3, True),
                          (2, 3, 4, True), (1, 4, 22, True)], 2, 2)
     nn = NeuralNetwork()
     nn.generate_network(genome)
     self.assertEqual(nn._connections, {
         (2, 4): 0,
         (1, 3): -3,
         (2, 3): 4,
         (1, 4): 22
     })
コード例 #3
0
 def test_node_creation(self):
     genome = GenomeMock([(2, 4, 0, True), (1, 3, -3, True),
                          (2, 3, 4, True), (1, 4, 22, True),
                          (1, 5, 3, True)], 2, 2)
     nn = NeuralNetwork()
     nn.generate_network(genome)
     self.assertEqual(1 in nn._neurons, True)
     self.assertEqual(2 in nn._neurons, True)
     self.assertEqual(3 in nn._neurons, True)
     self.assertEqual(4 in nn._neurons, True)
     self.assertEqual(5 in nn._neurons, True)
     self.assertEqual(1 in nn._input_neurons, True)
     self.assertEqual(2 in nn._input_neurons, True)
     self.assertEqual(3 in nn._input_neurons, False)
     self.assertEqual(4 in nn._input_neurons, False)
     self.assertEqual(5 in nn._input_neurons, False)
     self.assertEqual(1 in nn._output_neurons, False)
     self.assertEqual(2 in nn._output_neurons, False)
     self.assertEqual(3 in nn._output_neurons, True)
     self.assertEqual(4 in nn._output_neurons, True)
     self.assertEqual(5 in nn._output_neurons, False)
コード例 #4
0
 def test_input_neurons_have_input_signal(self):
     genome = GenomeMock([(2, 4, 0, True), (1, 3, 0, True), (2, 3, 0, True),
                          (1, 4, 0, True)], 2, 2)
     nn = NeuralNetwork()
     nn.generate_network(genome)
     nn.forward([3, 22])
     self.assertEqual(nn._input_neurons[1]._input_signals, [3])
     self.assertEqual(nn._input_neurons[2]._input_signals, [22])
コード例 #5
0
 def test_input_length_exception(self):
     genome = GenomeMock([(2, 4, 0, True), (1, 3, 0, True), (2, 3, 0, True),
                          (1, 4, 0, True)], 2, 2)
     nn = NeuralNetwork()
     nn.generate_network(genome)
     with self.assertRaises(Exception) as e:
         nn.forward([1])
     self.assertEqual(str(e.exception), "Expected 2 inputs, got 1 instead")
コード例 #6
0
    def test_hard_forward_propagation(self):
        genome = GenomeMock([(1, 5, 3, True), (2, 5, -2, True),
                             (1, 6, -1, True), (5, 6, -3.4, True),
                             (3, 6, 4, True), (6, 4, 5, True)], 3, 1)
        nn = NeuralNetwork()
        nn.generate_network(genome)
        y = nn.forward([0.2, 2, -0.02])
        self.assertAlmostEqual(y[0], 0.5144, places=4)

        genome = GenomeMock([(1, 5, 3, True),
                             (2, 5, -2, True), (1, 7, -1, True),
                             (5, 7, -3.4, True), (3, 7, 4, True),
                             (7, 6, 2, True), (6, 4, 0.3, True)], 3, 1)
        nn.generate_network(genome)
        y = nn.forward([0.2, 2, -0.02])
        self.assertAlmostEqual(y[0], 0.6778, places=4)
コード例 #7
0
# load the MNIST dataset
dataset = datasets.load_digits()

# apply min/max scaling to scale the
# pixel intensity values to the range [0, 1]
data = dataset.data.astype("float")
data = (data - data.min()) / (data.max() - data.min())
print("[INFO] samples: {}, dim: {}".format(data.shape[0],data.shape[1]))
labels = dataset.target

# split training: 75%, testing: 25%
(trainX, testX, trainY, testY) = train_test_split(data,
                                labels, test_size=0.25, random_state=42)

# convert labels as vector
lb = LabelBinarizer()
trainY = lb.fit_transform(trainY)
testY  = lb.fit_transform(testY)

# train the network
print("[INFO] training network ...")
model = NeuralNetwork([trainX.shape[1], 32, 16, 10],alpha=0.5)
print("[INFO] {}".format(model))
model.fit(trainX, trainY, epochs=1000)

# evaluate network
print("[INFO] evaluating network...")
preds = model.predict(testX)
print(classification_report(testY.argmax(axis=1), preds.argmax(axis=1)))
コード例 #8
0
    parser.add_argument('--model_path',
                        '-m',
                        type=str,
                        required=True,
                        nargs=1,
                        dest='model_path',
                        help='path to trained model')

    return vars(parser.parse_args(argv))


if __name__ == '__main__':

    # parse command line arguments
    args = parameter_parse(sys.argv[1:])

    # load data and model
    nn = NeuralNetwork.load(args['model_path'][0])
    test = load_data(args['data_path'][0])

    # clean the data
    test_x = [normalize(x, 255) for x in test['x']]
    test_y = output2binary(test['y'][0])

    # make prediction
    nn.bulk_predict(test_x, test_y)

    # get results
    print("Accuracy: %f" % ((nn.hit_count / len(test_x)) * 100))
    print("Hit count: %d" % nn.hit_count)
コード例 #9
0
    required=True, help='Enter type of bitwise dataset to apply the perceptron')
ap.add_argument('-e', '--epochs', type=int, default=20000,
    help='# of epochs to fit dataset')
args = vars(ap.parse_args())


datasets = {
    'and': [[0], [0], [0], [1]],
    'or': [[0], [1], [1], [1]],
    'xor': [[0], [1], [1], [0]]
}

# construct the dataset
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array(datasets[args['dataset']])


# define our 2-2-1 neural network and train it
print(f'[INFO] training Neural Network for {args["epochs"]} epochs')
nn = NeuralNetwork([2, 2, 1], alpha=0.5)
nn.fit(X, y, epochs=args['epochs'])


print('[INFO] testing the Neural Network')
for x, target in zip(X, y):
    # make a prediciton on the data point and display the result
    # to our console
    pred = nn.predict(x)
    step = 1 if pred > 0.5 else 0
    print(f'[INFO] data={x}, ground-truth={target[0]}, pred={pred[0][0]:.4f}, step={step}')
コード例 #10
0
# import the necessary packages
from nn.neuralnetwork import NeuralNetwork
import numpy as np
import matplotlib.pyplot as plt

# construct the XOR dataset
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([[0], [1], [1], [0]])

epochs = 20000

# define our 2-2-1 neural network and train it
nn = NeuralNetwork([2, 1], alpha=0.5)
losses = nn.fit(X, y, epochs=epochs)

# evaluate our model
print("[INFO] evaluating...")
# now that our network is trained, loop over the XOR data points
for (x, target) in zip(X, y):
    # make a prediction on the data point and display the result to our console
    pred = nn.predict(x)[0][0]
    step = 1 if pred > 0.5 else 0
    print("[INFO] data={}, ground-truth={}, pred={:.4f}, step={}".format(
        x, target[0], pred, step))

# construct a figure that plots the loss over time
plt.style.use("ggplot")
plt.figure()
plt.plot(np.arange(0, len(losses)), losses)
plt.title("Training Loss")
plt.xlabel("Epoch #")
コード例 #11
0
ファイル: generation.py プロジェクト: kotwgarnku/TetrisENN
 def create_phenotypes(self):
     for group in self.groups.values():
         for genome in group.genomes:
             self.phenotypes.append(NeuralNetwork(genome))
コード例 #12
0
#!/usr/local/bin/python3.6

## import packages
import os
import sys
sys.path.append("./nn")
from nn.neuralnetwork import NeuralNetwork
import numpy as np
import matplotlib.pyplot as plt

# create XOR datasets
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([[0], [1], [1], [0]])

Epochs = 20000
nn = NeuralNetwork([2, 2, 1], alpha=0.8)
displayLoss = nn.fit(X, y, epochs=Epochs)

# predict X
print("[INFO] Predicting on XOR...")

for (x, target) in zip(X, y):
    pred = nn.predict(x)[0][0]  # because p is 2d array

    # encode in to 1 or 0
    pred_label = 1 if pred > 0.5 else 0
    print("[INFO] data={}, gt={}, pred={}, pred_label={}".format(
        x, target, pred, pred_label))

# plot learning curve
plt.figure()
コード例 #13
0
    def test_simple_xor(self):
        print("testing simple xor")
        Group._GROUP_ID = 0
        Generation._GENERATION_ID = 0
        specie = Group()
        for i in range(16):
            for j in range(17, 21):
                ConnectionGene(i + 1, j, enabled=True)

        connection_list = []
        z = 0
        for i in range(16):
            for j in range(17, 21):
                connection_list.append([
                    i + 1, j,
                    random.normalvariate(mu=0.0, sigma=1.0), True, z
                ])
                z += 1
        print(connection_list)
        for i in range(10):
            specie.add_genome(
                Genome(
                    [[1, 3,
                      random.normalvariate(mu=0.0, sigma=1.0), True, 0],
                     [2, 3,
                      random.normalvariate(mu=0.0, sigma=1.0), True, 1]], 2,
                    1))

        mutation_coefficients = {
            'add_connection': 0.5,
            'split_connection': 0.2,
            'change_weight': 0.8,
            'new_connection_abs_max_weight': 1.0,
            'max_weight_mutation': 0.5
        }
        compatibility_coefficients = {
            'excess_factor': 1.0,
            'disjoint_factor': 1.0,
            'weight_difference_factor': 2.0
        }
        log = Logger()
        gen = Generation([specie],
                         mutation_coefficients=mutation_coefficients,
                         compatibility_coefficients=compatibility_coefficients,
                         logger=log)

        i = 1
        while i < 150:
            print(i)
            gen = gen.create_new_generation()
            i += 1
        best_nn = NeuralNetwork(Generation.best_genome)
        a = (best_nn.forward([0.0, 0.0]))
        b = (best_nn.forward([0.0, 1.0]))
        c = (best_nn.forward([1.0, 0.0]))
        d = (best_nn.forward([1.0, 1.0]))
        print(a)
        print(b)
        print(c)
        print(d)

        print(4.0 - (a[0] - 0)**2 - (b[0] - 1)**2 - (c[0] - 1)**2 -
              (d[0] - 0)**2)
        print(best_nn._genome.fitness)

        groups_count = []
        for generation_log in gen.logger.log.values():
            groups_count.append(len(generation_log.groups_log))

        plt.plot(list(gen.logger.log.keys()), groups_count)
        plt.xlabel("Generation")
        plt.ylabel("Number of groups")
        plt.title("Groups amount change over evolution")
        plt.savefig("plot of gen count")
        plt.clf()

        last_gen_groups_fitness = []
        for fit in gen.logger.log[gen.id -
                                  1].groups_fitness_scores_log.values():
            last_gen_groups_fitness.append(fit[0][2])
        plt.plot(list(gen.logger.log[gen.id - 1].groups_log.keys()),
                 last_gen_groups_fitness, 'ro')
        plt.xlabel("Group")
        plt.ylabel("Group adjusted fitness")
        plt.title("Adjusted fitness of groups in last generation")
        plt.savefig("plot of last gen fitness")
        plt.clf()

        plt.plot(list(Generation.best_fitnesses.keys()),
                 list(Generation.best_fitnesses.values()))
        plt.xlabel("Generation")
        plt.ylabel("Fitness score")
        plt.title("Fitness score progression")
        plt.savefig("plot of fitness")
コード例 #14
0
    # prepare training data
    train = load_data(args['data_path'])
    train_x = [normalize(x, 255) for x in train['x']]
    train_y = output2binary(train['y'][0])

    # load validation data
    validate = None
    if VALIDATE_DATA:
        try:
            validate = load_data(args['validation_path'])
        except FileNotFoundError:
            print('Validation file not found on given path, omitting\n')
            VALIDATE_DATA = False

    # build model from template
    NN = NeuralNetwork.create(args['template_path'])

    if len(NN.network) > 2:
        # if not single layer network do not visualize even if flag is set
        VISUALIZE = False

    # log the data for graph
    losses = []
    accuracies = []
    validation_accuracies = []

    for epoch in range(NN.epochs):

        NN.dropout_probability = NN.default_dropout_chance
        NN.fit(train_x, train_y)
コード例 #15
0
from nn.neuralnetwork import NeuralNetwork
from sklearn.preprocessing import LabelBinarizer
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn import datasets

print('[INFO] loading MNST (sample) dataset...')
digits = datasets.load_digits()
data = digits.data.astype('float')
data = (data - data.min()) / (data.max() - data.min())
print(f'[INFO] samples: {data.shape[0]}, dim: {data.shape[1]}')

(trainX, testX, trainY, testY) = train_test_split(data,
                                                  digits.target,
                                                  test_size=0.25)

trainY = LabelBinarizer().fit_transform(trainY)
testY = LabelBinarizer().fit_transform(testY)

print('[INFO] training network...')
nn = NeuralNetwork([trainX.shape[1], 32, 16, 10])
print(f'[INFO] {nn}')
nn.fit(trainX, trainY, epochs=1000)

print('[INFO] evaluating network...')
predictions = nn.predict(testX)
predictions = predictions.argmax(axis=1)
print(classification_report(testY.argmax(axis=1), predictions))
コード例 #16
0
    def test_easy_forward_propagation(self):
        genome = GenomeMock([(2, 4, 0, True), (1, 3, 0, True), (2, 3, 0, True),
                             (1, 4, 0, True)], 2, 2)
        nn = NeuralNetwork()
        nn.generate_network(genome)
        y = nn.forward([3, 22])
        self.assertEqual(len(y), 2)
        self.assertEqual(y, [0.5, 0.5])

        genome = GenomeMock([(2, 4, 1, True), (1, 3, 0, True), (2, 3, 0, True),
                             (1, 4, 0, True)], 2, 2)
        nn.generate_network(genome)
        y = nn.forward([3, 22])
        self.assertEqual(y[0], 0.5)
        self.assertAlmostEqual(y[1], 0.9926085)

        genome = GenomeMock([(2, 4, 1, True), (1, 3, 0, True), (2, 3, 0, True),
                             (1, 4, -2, True)], 2, 2)
        nn.generate_network(genome)
        y = nn.forward([3, 22])
        self.assertEqual(y[0], 0.5)
        self.assertAlmostEqual(y[1], 0.00739157)

        genome = GenomeMock([(2, 4, 1, True), (1, 3, 0, False),
                             (2, 3, 0, False), (1, 4, -2, True)], 2, 2)
        nn.generate_network(genome)
        y = nn.forward([3, 22])
        self.assertEqual(y[0], 0.5)
        self.assertAlmostEqual(y[1], 0.00739157)
コード例 #17
0
ファイル: nn_xor.py プロジェクト: schwab/gpu_learn
from nn.neuralnetwork import NeuralNetwork
import numpy as np

X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([[0], [1], [1], [0]])

nn = NeuralNetwork([2, 2, 1], alpha=0.5)
nn.fit(X, y, epochs=20000)

for (x, target) in zip(X, y):
    pred = nn.predict(x)[0][0]
    step = 1 if pred > 0.5 else 0
    print("[INFO] data={}, ground-truth={}, pred={:.4f}, step={}".format(
        x, target[0], pred, step))
コード例 #18
0
from nn.neuralnetwork import NeuralNetwork
from nn.dataset import Dataset
from nn.layer import Layer
from nn.utils import kfold_cv_generator

import numpy as np

if __name__ == '__main__':
    dataset = Dataset('iris.csv')
    data = dataset.data
    output_real = dataset.attr

    nn = NeuralNetwork()
    nn.add(Layer(4))
    nn.add(Layer(32, activation='relu'))
    nn.add(Layer(3, activation='sigmoid'))

    id_train, id_test = kfold_cv_generator(data, n_splits=8)

    kf = 1
    acc = []
    for train_idx, test_idx in zip(id_train, id_test):
        train = data.iloc[train_idx]
        test = data.iloc[test_idx]

        print("#FOLD: ", kf)
        score = nn.learn(train,
                         test,
                         output_real,
                         kf,
                         epochs=100,
コード例 #19
0
    def test_evolve_xor(self):
        print("testing advanced xor")
        Group._GROUP_ID = 0
        Generation._GENERATION_ID = 0

        specie = Group()

        c1 = ConnectionGene(1, 3, enabled=True)
        c2 = ConnectionGene(2, 3, enabled=True)
        c3 = ConnectionGene(2, 3, enabled=True)
        c4 = ConnectionGene(2, 3, enabled=True)
        c5 = ConnectionGene(2, 3, enabled=True)
        c6 = ConnectionGene(2, 3, enabled=True)
        c7 = ConnectionGene(2, 3, enabled=True)
        c8 = ConnectionGene(2, 3, enabled=True)
        c9 = ConnectionGene(2, 3, enabled=True)
        c10 = ConnectionGene(2, 3, enabled=True)
        c11 = ConnectionGene(2, 3, enabled=True)
        c12 = ConnectionGene(2, 3, enabled=True)
        c13 = ConnectionGene(2, 3, enabled=True)
        c14 = ConnectionGene(2, 3, enabled=True)
        c15 = ConnectionGene(2, 3, enabled=True)
        c16 = ConnectionGene(2, 3, enabled=True)
        c17 = ConnectionGene(2, 3, enabled=True)
        c18 = ConnectionGene(2, 3, enabled=True)
        c19 = ConnectionGene(2, 3, enabled=True)
        c20 = ConnectionGene(2, 3, enabled=True)
        c21 = ConnectionGene(2, 3, enabled=True)
        c22 = ConnectionGene(2, 3, enabled=True)
        c23 = ConnectionGene(2, 3, enabled=True)
        c24 = ConnectionGene(2, 3, enabled=True)
        c25 = ConnectionGene(2, 3, enabled=True)
        c26 = ConnectionGene(2, 3, enabled=True)
        c27 = ConnectionGene(2, 3, enabled=True)
        c28 = ConnectionGene(2, 3, enabled=True)
        c29 = ConnectionGene(2, 3, enabled=True)
        c30 = ConnectionGene(2, 3, enabled=True)
        c31 = ConnectionGene(2, 3, enabled=True)
        c31 = ConnectionGene(2, 3, enabled=True)
        c33 = ConnectionGene(2, 3, enabled=True)

        for i in range(10):
            specie.add_genome(
                Genome([
                    [1, 9, random.normalvariate(mu=0.0, sigma=1.0), True],
                    [1, 10,
                     random.normalvariate(mu=0.0, sigma=1.0), True],
                    [1, 11,
                     random.normalvariate(mu=0.0, sigma=1.0), True],
                    [1, 12,
                     random.normalvariate(mu=0.0, sigma=1.0), True],
                    [2, 9, random.normalvariate(mu=0.0, sigma=1.0), True],
                    [2, 10,
                     random.normalvariate(mu=0.0, sigma=1.0), True],
                    [2, 11,
                     random.normalvariate(mu=0.0, sigma=1.0), True],
                    [2, 12,
                     random.normalvariate(mu=0.0, sigma=1.0), True],
                    [3, 9, random.normalvariate(mu=0.0, sigma=1.0), True],
                    [3, 10,
                     random.normalvariate(mu=0.0, sigma=1.0), True],
                    [3, 11,
                     random.normalvariate(mu=0.0, sigma=1.0), True],
                    [3, 12,
                     random.normalvariate(mu=0.0, sigma=1.0), True],
                    [4, 9, random.normalvariate(mu=0.0, sigma=1.0), True],
                    [4, 10,
                     random.normalvariate(mu=0.0, sigma=1.0), True],
                    [4, 11,
                     random.normalvariate(mu=0.0, sigma=1.0), True],
                    [4, 12,
                     random.normalvariate(mu=0.0, sigma=1.0), True],
                    [5, 9, random.normalvariate(mu=0.0, sigma=1.0), True],
                    [5, 10,
                     random.normalvariate(mu=0.0, sigma=1.0), True],
                    [5, 11,
                     random.normalvariate(mu=0.0, sigma=1.0), True],
                    [5, 12,
                     random.normalvariate(mu=0.0, sigma=1.0), True],
                    [6, 9, random.normalvariate(mu=0.0, sigma=1.0), True],
                    [6, 10,
                     random.normalvariate(mu=0.0, sigma=1.0), True],
                    [6, 11,
                     random.normalvariate(mu=0.0, sigma=1.0), True],
                    [6, 12,
                     random.normalvariate(mu=0.0, sigma=1.0), True],
                    [7, 9, random.normalvariate(mu=0.0, sigma=1.0), True],
                    [7, 10,
                     random.normalvariate(mu=0.0, sigma=1.0), True],
                    [7, 11,
                     random.normalvariate(mu=0.0, sigma=1.0), True],
                    [7, 12,
                     random.normalvariate(mu=0.0, sigma=1.0), True],
                    [8, 9, random.normalvariate(mu=0.0, sigma=1.0), True],
                    [8, 10,
                     random.normalvariate(mu=0.0, sigma=1.0), True],
                    [8, 11,
                     random.normalvariate(mu=0.0, sigma=1.0), True],
                    [8, 12,
                     random.normalvariate(mu=0.0, sigma=1.0), True]
                ], 8, 4))

        mutation_coefficients = {
            'add_connection': 0.5,
            'split_connection': 0.2,
            'change_weight': 0.8,
            'new_connection_abs_max_weight': 1.0,
            'max_weight_mutation': 0.25
        }
        compatibility_coefficients = {
            'excess_factor': 1.0,
            'disjoint_factor': 1.0,
            'weight_difference_factor': 0.5
        }
        log = Logger()
        gen = Generation([specie],
                         mutation_coefficients=mutation_coefficients,
                         compatibility_coefficients=compatibility_coefficients,
                         logger=log)

        i = 1
        while i < 8:
            print(i)
            gen = gen.create_new_generation()
            i += 1
        best_nn = NeuralNetwork(Generation.best_genome)
        print(best_nn.forward([0, 1, 1, 0, 0, 1, 1, 0]))
        print(str(best_nn._genome.fitness) + "/" + str(256 * 4))
コード例 #20
0
ファイル: nn_mnist.py プロジェクト: zlyin/Orca
# min-max normalization
data = (data - data.min()) / (data.max() - data.min())
print("[INFO] samples = {}, dim = {}".format(data.shape[0], data.shape[1]))

## split datasets 75%-25%
trainX, testX, trainY, testY = train_test_split(data,
                                                digits.target,
                                                test_size=0.25)

# One-hot encoding targets
trainY = LabelBinarizer().fit_transform(trainY)
testY = LabelBinarizer().fit_transform(testY)

## train the model
print("[INFO] training network....")
nn = NeuralNetwork([trainX.shape[1], 32, 16, 16, 10], alpha=0.5)
print("[INFO] {}".format(nn))
displayLoss = nn.fit(trainX, trainY, epochs=1000)

## test
print("[INFO] evaluating...")
pred_probs = nn.predict(testX)
pred_labels = pred_probs.argmax(axis=1)
print(classification_report(pred_labels, testY.argmax(axis=1)))

# plot learning curve
plt.figure()
plt.plot(np.arange(0, 1100, 100), displayLoss)
plt.title("loss of on MNIST samples".format(nn))
plt.xlabel("epoch #")
plt.ylabel("loss")