コード例 #1
0
ファイル: ladder.py プロジェクト: fulldecent/LRE
 def f_pool(self, x, spec, in_dim):
     layer_type, dims = spec
     num_filters = in_dim[0]
     if "globalmeanpool" == layer_type:
         y, output_size = global_meanpool_2d(x, num_filters)
         # scale the variance to match normal conv layers with xavier init
         y = y * np.float32(in_dim[-1]) * np.float32(np.sqrt(3))
     else:
         assert dims[0] != 1 or dims[1] != 1
         y, output_size = maxpool_2d(x, in_dim,
                                     poolsize=(dims[1], dims[1]),
                                     poolstride=(dims[0], dims[0]))
     return y, output_size
コード例 #2
0
ファイル: ladder.py プロジェクト: xinw1012/ladder-maxent
 def f_pool(self, x, spec, in_dim):
     layer_type, dims = spec
     num_filters = in_dim[0]
     if "globalmeanpool" == layer_type:
         y, output_size = global_meanpool_2d(x, num_filters)
         # scale the variance to match normal conv layers with xavier init
         y = y * np.float32(in_dim[-1]) * np.float32(np.sqrt(3))
     else:
         assert dims[0] != 1 or dims[1] != 1
         y, output_size = maxpool_2d(x, in_dim,
                                     poolsize=(dims[1], dims[1]),
                                     poolstride=(dims[0], dims[0]))
     return y, output_size