コード例 #1
0
    def main(self, x_train, y_train, x_test, y_test, x_val, y_val):
        print("############################# Prime Train ################################")
        model_prime = nn_models()
        model_prime.ip_shape = x_train.shape
        model_p = model_prime.lenet5()

        model_prime = Model(inputs=model_p.input,
                            outputs=model_p.get_layer('dense2').output)

        prime_op_tr = model_prime.predict(x_train)
        prime_op_tt = model_prime.predict(x_test)
        prime_op_v = model_prime.predict(x_val)

        for i in range(self.iters):
            split_buckets = self.bucket_function(i)

            experts_out_train = []
            experts_out_test = []
            experts_out_val = []
            for j in sorted(split_buckets):
                X = x_train[split_buckets[j]]
                y = y_train[split_buckets[j]]

                model = self.train_model(X, y, x_val, y_val, i)
                yhats_train = model.predict(x_train, batch_size=256)
                yhats_test = model.predict(x_test, batch_size=256)
                yhats_val = model.predict(x_val, batch_size=256)

                experts_out_train.append(yhats_train)
                experts_out_test.append(yhats_test)
                experts_out_val.append(yhats_val)

            yhat_tr = np.hstack(experts_out_train)
            yhat_tt = np.hstack(experts_out_test)
            yhat_val = np.hstack(experts_out_val)

            model = self.gater()
            history = model.fit([prime_op_tr, yhat_tr], y_train, shuffle=True,
                                batch_size=256, verbose=1,
                                validation_data=([prime_op_v, yhat_val], y_val),
                                epochs=500, callbacks=[self.early_stopping])

            yhats_train = model.predict([prime_op_tr, yhat_tr], batch_size=256)
            yhats_test = model.predict([prime_op_tt, yhat_tt], batch_size=256)
            yhats_val = model.predict([prime_op_v, yhat_val], batch_size=256)

            tre = eval_target(yhats_train, y_train)
            tte = eval_target(yhats_test, y_test)
            vale = eval_target(yhats_val, y_val)

            logging.info('{}, {}, {}, {}'.format(i, tre, vale, tte))

            expert_units = Model(inputs=model.input,
                                 outputs=model.get_layer('layer_op').output)

            self.wm_xi = expert_units.predict([prime_op_tr, yhat_tr])

        return None
コード例 #2
0
    def train_model(self, X, y, x_val, y_val, i):
        model = nn_models()
        model.ip_shape = X.shape
        model = model.lenet5()
        model.fit(X, y, batch_size=256, epochs=500, validation_data=(x_val, y_val),
                  verbose=1, callbacks=[self.early_stopping])

        yhat_train = model.predict(X, batch_size=256)
        yhat_val = model.predict(x_val, batch_size=256)

        train_error = eval_target(yhat_train, y)
        val_error = eval_target(yhat_val, y_val)
        self.warn_log.append([i, train_error, val_error])

        return model
コード例 #3
0
    def model_train(self, X, y, X_val, y_val):
        model = nn_models()
        model.ip_shape = X.shape
        model = model.lenet5()

        early_callback = CustomCallback()
        model.fit(X, y, batch_size=256, epochs=500, validation_data=(X_val, y_val),
                   callbacks=[early_callback], verbose=1)

        yhat_train = model.predict(X, batch_size=256)
        yhat_val = model.predict(x_val, batch_size=256)

        train_error = eval_target(yhat_train, y)
        val_error = eval_target(yhat_val, y_val)

        self.warn_log.append([train_error, val_error])

        return model
コード例 #4
0
    def model_train(self, X, y, x_test, y_test, X_val, y_val, i):
        model = nn_models()
        model.ip_shape = X.shape
        model = model.lenet5()
        model.learning_rate = 0.0001
        model.fit(X, y, batch_size=256, epochs=self.epoch, validation_data=(X_val, y_val),
                  verbose=1, callbacks=[self.early_stopping])

        yhat_train = model.predict(X, batch_size=256)
        yhat_val = model.predict(x_val, batch_size=256)
        yhat_test = model.predict(x_test, batch_size=256)

        train_error = eval_target(yhat_train, y)
        val_error = eval_target(yhat_val, y_val)
        test_error = eval_target(yhat_test, y_test)

        self.warn_log.append([i, train_error, val_error, test_error])

        return model
コード例 #5
0
    def main(self, x_train, y_train, x_test, y_test, x_val, y_val):

        print("############################# Prime Train ################################")
        model_p = nn_models()
        model_p.ip_shape = x_train.shape
        model_p.learning_rate = 0.0001
        model_p = model_p.lenet5()
        model_p.fit(x_train, y_train, batch_size=256, epochs=self.epoch, validation_data=(x_val, y_val),
                    verbose=1, callbacks=[self.early_stopping])

        model_prime = Model(inputs=model_p.input,
                            outputs=model_p.get_layer('dense2').output)

        prime_op_tr = model_prime.predict(x_train)
        prime_op_tt = model_prime.predict(x_test)
        prime_op_v = model_prime.predict(x_val)

        prime_op_train = model_p.predict(x_train)
        prime_op_val = model_p.predict(x_val)
        prime_op_test = model_p.predict(x_test)

        prime_train_e = eval_target(prime_op_train, y_train)
        prime_val_e = eval_target(prime_op_val, y_val)
        prime_test_e = eval_target(prime_op_test, y_test)

        self.warn_log.append([-1, prime_train_e, prime_val_e, prime_test_e])

        for i in range(self.iters):
            yhat_train_exp = []
            yhats_test_exp = []
            yhats_val_exp = []
            for j in range(self.experts):
                print("############################# Expert {} Iter {} ################################".format(j, i))

                buckets = self.split_buckets(i, j, y_train)
                X = x_train[buckets]
                y = y_train[buckets]

                model = self.model_train(X, y, x_test, y_test, x_val, y_val, i)

                yhat_train = model.predict(x_train, batch_size=256)
                yhats_test = model.predict(x_test, batch_size=256)
                yhats_val = model.predict(x_val, batch_size=256)

                yhat_train_exp.append(yhat_train)
                yhats_test_exp.append(yhats_test)
                yhats_val_exp.append(yhats_val)

            yhat_tr = np.hstack(yhat_train_exp)
            yhat_tt = np.hstack(yhats_test_exp)
            yhat_val = np.hstack(yhats_val_exp)

            model = self.gater()
            history = model.fit([prime_op_tr, yhat_tr], y_train, shuffle=True,
                                batch_size=256, verbose=1,
                                validation_data=([prime_op_v, yhat_val], y_val),
                                epochs=self.epoch, callbacks=[self.early_stopping])

            yhats_train = model.predict([prime_op_tr, yhat_tr], batch_size=256)
            yhats_test = model.predict([prime_op_tt, yhat_tt], batch_size=256)
            yhats_val = model.predict([prime_op_v, yhat_val], batch_size=256)

            tre = eval_target(yhats_train, y_train)
            tte = eval_target(yhats_test, y_test)
            vale = eval_target(yhats_val, y_val)

            logging.info('{}, {}, {}, {}'.format(i, tre, vale, tte))

            expert_units = Model(inputs=model.input,
                                 outputs=model.get_layer('layer_op').output)

            self.wm_xi = expert_units.predict([prime_op_tr, yhat_tr])

        return None
コード例 #6
0
    def main(self, x_train, y_train, x_test, y_test, x_val, y_val):

        model_prime = nn_models()
        model_prime.ip_shape = x_train.shape
        model_p = model_prime.lenet5()

        model_p.fit(x_train,
                    y_train,
                    batch_size=256,
                    epochs=500,
                    validation_data=(x_val, y_val),
                    verbose=1,
                    callbacks=[self.early_stopping])

        model_prime = Model(inputs=model_p.input,
                            outputs=model_p.get_layer('dense2').output)

        prime_op_tr = model_prime.predict(x_train)
        prime_op_tt = model_prime.predict(x_test)
        prime_op_v = model_prime.predict(x_val)

        prime_op_train = model_p.predict(x_train)
        prime_op_val = model_p.predict(x_val)
        tre = eval_target(prime_op_train, y_train)
        vale = eval_target(prime_op_val, y_val)

        self.warn_log.append([-1, tre, vale])

        for i in range(self.iters):
            split_buckets = self.bucket_function(i)
            yhat_train_exp = []
            yhats_test_exp = []
            yhats_val_exp = []
            for expert_index in sorted(split_buckets):

                y = y_train[split_buckets[expert_index]]
                X = x_train[split_buckets[expert_index]]
                model = self.model_train(X, y, x_val, y_val, i)

                yhat_train = model.predict(x_train, batch_size=256)
                yhats_test = model.predict(x_test, batch_size=256)
                yhats_val = model.predict(x_val, batch_size=256)

                yhat_train_exp.append(yhat_train)
                yhats_test_exp.append(yhats_test)
                yhats_val_exp.append(yhats_val)

                print("Expert Index {}".format(expert_index))

            yhat_tr = np.hstack(yhat_train_exp)
            yhat_tt = np.hstack(yhats_test_exp)
            yhat_val = np.hstack(yhats_val_exp)

            model = self.gater()
            history = model.fit([prime_op_tr, yhat_tr],
                                y_train,
                                shuffle=True,
                                batch_size=256,
                                verbose=1,
                                validation_data=([prime_op_v,
                                                  yhat_val], y_val),
                                epochs=500,
                                callbacks=[self.early_stopping])

            yhats_train = model.predict([prime_op_tr, yhat_tr], batch_size=256)
            yhats_test = model.predict([prime_op_tt, yhat_tt], batch_size=256)
            yhats_val = model.predict([prime_op_v, yhat_val], batch_size=256)

            tre = eval_target(yhats_train, y_train)
            tte = eval_target(yhats_test, y_test)
            vale = eval_target(yhats_val, y_val)

            logging.info('{}, {}, {}, {}'.format(i, tre, vale, tte))

            expert_units = Model(inputs=model.input,
                                 outputs=model.get_layer('layer_op').output)

            self.wm_xi = expert_units.predict([prime_op_tr, yhat_tr])

        return "Gater Training Complete"
コード例 #7
0
    x_val = x_val.astype('float32')

    y_train = np_utils.to_categorical(y_train, 10)
    y_test = np_utils.to_categorical(y_test, 10)
    y_val = np_utils.to_categorical(y_val, 10)

    x_train /= 255
    x_test /= 255
    x_val /= 255

    mean_image = np.mean(x_train, axis=0)
    x_train -= mean_image
    x_test -= mean_image
    x_val -= mean_image

    model = nn_models()
    model.ip_shape = x_train.shape
    model = model.lenet5()
    early_callback = CustomCallback()

    model.fit(x_train, y_train, batch_size=256, verbose=1,
              validation_data=(x_val, y_val), epochs=500, callbacks=[early_callback])

    yhats_train = model.predict(x_train, batch_size=256)
    yhats_val = model.predict(x_val, batch_size=256)
    yhats_test = model.predict(x_test, batch_size=256)

    train_error = eval_target(yhats_train, y_train)
    val_error = eval_target(yhats_val, y_val)
    test_error = eval_target(yhats_test, y_test)