コード例 #1
0
ファイル: test_tf_NN.py プロジェクト: zhushaoquan/nn_builder
def test_output_activation():
    """Tests whether network outputs data that has gone through correct activation function"""
    RANDOM_ITERATIONS = 20
    for _ in range(RANDOM_ITERATIONS):
        data = 2.0 * (np.random.random((1, 100)) - 0.5)
        nn_instance = NN(layers_info=[5, 5, 5],
                         hidden_activations="relu",
                         output_activation="relu",
                         initialiser="xavier")
        out = nn_instance(data)
        assert all(tf.squeeze(out) >= 0)

        nn_instance = NN(layers_info=[5, 5, 5],
                         hidden_activations="relu",
                         output_activation="sigmoid",
                         initialiser="xavier")
        out = nn_instance(data)
        assert all(tf.squeeze(out) >= 0)
        assert all(tf.squeeze(out) <= 1)

        nn_instance = NN(layers_info=[5, 5, 5],
                         hidden_activations="relu",
                         output_activation="softmax",
                         initialiser="xavier")
        out = nn_instance(data)
        assert all(tf.squeeze(out) >= 0)
        assert all(tf.squeeze(out) <= 1)
        assert np.round(tf.reduce_sum(tf.squeeze(out)), 3) == 1.0

        nn_instance = NN(layers_info=[5, 5, 5], hidden_activations="relu")

        out = nn_instance(data)
        assert not all(tf.squeeze(out) >= 0)
        assert not np.round(tf.reduce_sum(tf.squeeze(out)), 3) == 1.0
コード例 #2
0
ファイル: test_tf_NN.py プロジェクト: zhushaoquan/nn_builder
def test_dropout():
    """Tests whether dropout layer reads in probability correctly"""
    nn_instance = NN(layers_info=[10, 10, 1], dropout=0.9999)
    assert nn_instance.dropout_layer.rate == 0.9999
    assert not solves_simple_problem(X, y, nn_instance)
    nn_instance = NN(layers_info=[10, 10, 1], dropout=0.00001)
    assert nn_instance.dropout_layer.rate == 0.00001
    assert solves_simple_problem(X, y, nn_instance)
コード例 #3
0
ファイル: test_tf_NN.py プロジェクト: zhushaoquan/nn_builder
def test_incorporate_embeddings():
    """Tests the method incorporate_embeddings"""
    X_new = X
    X_new[:, [2, 4]] = tf.round(X_new[:, [2, 4]])
    nn_instance = NN(layers_info=[10],
                     columns_of_data_to_be_embedded=[2, 4],
                     embedding_dimensions=[[50, 3], [55, 4]])
    out = nn_instance.incorporate_embeddings(X)
    assert out.shape == (N, X.shape[1] + 3 + 4 - 2)
コード例 #4
0
ファイル: test_tf_NN.py プロジェクト: zhushaoquan/nn_builder
def test_all_activations_work():
    """Tests that all activations get accepted"""
    nn_instance = NN(layers_info=[10, 10, 1], dropout=0.9999)
    for key in nn_instance.str_to_activations_converter.keys():
        model = NN(layers_info=[10, 10, 1],
                   dropout=0.9999,
                   hidden_activations=key,
                   output_activation=key)
        model(X)
コード例 #5
0
ファイル: test_tf_NN.py プロジェクト: zhushaoquan/nn_builder
def test_activations_user_input():
    """Tests whether network rejects an invalid hidden_activations or output_activation from user"""
    inputs_that_should_fail = [-1, "aa", ["dd"], [2], 0, 2.5, {2}, "Xavier_"]
    for input_value in inputs_that_should_fail:
        with pytest.raises(AssertionError):
            NN(layers_info=[2],
               hidden_activations=input_value,
               output_activation="relu")
            NN(layers_info=[2],
               hidden_activations="relu",
               output_activation=input_value)
コード例 #6
0
ファイル: test_tf_NN.py プロジェクト: zhushaoquan/nn_builder
def test_model_trains():
    """Tests whether a small range of networks can solve a simple task"""
    for output_activation in ["sigmoid", "None"]:
        nn_instance = NN(layers_info=[10, 10, 10, 1],
                         output_activation=output_activation,
                         dropout=0.01,
                         batch_norm=True)
        assert solves_simple_problem(X, y, nn_instance)
    z = X[:, 0:1] > 0
    z = np.concatenate([z == 1, z == 0], axis=1)
    nn_instance = NN(layers_info=[10, 10, 10, 2],
                     output_activation="softmax",
                     dropout=0.01,
                     batch_norm=True)
    assert solves_simple_problem(X, z, nn_instance)
コード例 #7
0
ファイル: test_tf_NN.py プロジェクト: zhushaoquan/nn_builder
def test_output_head_activations_work():
    """Tests that output head activations work properly"""
    nn_instance = NN(layers_info=[4, 7, 9, [5, 10, 3]],
                     hidden_activations="relu",
                     output_activation=["softmax", None, "relu"])

    x = np.random.random((20, 2)) * -20.0
    out = nn_instance(x)

    assert out.shape == (20, 18)

    sums = tf.reduce_sum(out[:, :5], axis=1)
    sums_others = tf.reduce_sum(out[:, 5:], axis=1)
    sums_others_2 = tf.reduce_sum(out[:, 5:15], axis=1)
    sums_others_3 = tf.reduce_sum(out[:, 15:18], axis=1)

    for row in range(out.shape[0]):
        assert tf.math.equal(np.round(sums[row], 4), 1.0), sums[row]
        assert not tf.math.equal(np.round(sums_others[row], 4), 1.0), np.round(
            sums_others[row], 4)
        assert not tf.math.equal(np.round(sums_others_2[row], 4),
                                 1.0), np.round(sums_others_2[row], 4)
        assert not tf.math.equal(np.round(sums_others_3[row], 4),
                                 1.0), np.round(sums_others_3[row], 4)
        for col in range(3):
            assert out[row, 15 + col] >= 0.0, out[row, 15 + col]
コード例 #8
0
ファイル: test_tf_NN.py プロジェクト: zhushaoquan/nn_builder
def test_y_range_user_input():
    """Tests whether network rejects invalid y_range inputs"""
    invalid_y_range_inputs = [(4, 1), (2, 4, 8), [2, 4], (np.array(2.0), 6.9)]
    for y_range_value in invalid_y_range_inputs:
        with pytest.raises(AssertionError):
            print(y_range_value)
            nn_instance = NN(layers_info=[10, 10, 3], y_range=y_range_value)
コード例 #9
0
ファイル: test_tf_NN.py プロジェクト: zhushaoquan/nn_builder
def test_linear_layers_info():
    """Tests whether create_hidden_layers_info method works correctly"""
    for input_dim, output_dim, hidden_units in zip(range(5, 8), range(
            9, 12), [[2, 9, 2], [3, 5, 6], [9, 12, 2]]):
        hidden_units.append(output_dim)
        print(hidden_units)
        nn_instance = NN(layers_info=copy.copy(hidden_units),
                         hidden_activations="relu",
                         output_activation="softmax",
                         initialiser="xavier")
        print(hidden_units)
        assert len(nn_instance.hidden_layers) == len(hidden_units) - 1
        for layer_ix in range(len(hidden_units) - 1):
            layer = nn_instance.hidden_layers[layer_ix]
            print(nn_instance.hidden_layers[layer_ix])
            assert type(layer) == tf.keras.layers.Dense
            assert layer.units == hidden_units[layer_ix]
            assert layer.kernel_initializer == initializers.glorot_uniform, layer.kernel_initializer
            assert layer.activation == activations.relu

        output_layer = nn_instance.output_layers[0]
        assert type(output_layer) == tf.keras.layers.Dense
        assert output_layer.units == hidden_units[-1]
        assert output_layer.kernel_initializer == initializers.glorot_uniform
        assert output_layer.activation == activations.softmax
コード例 #10
0
ファイル: test_tf_NN.py プロジェクト: zhushaoquan/nn_builder
def test_linear_hidden_units_user_input():
    """Tests whether network rejects an invalid linear_hidden_units input from user"""
    inputs_that_should_fail = ["a", ["a", "b"], [2, 4, "ss"], [-2], 2]
    for input_value in inputs_that_should_fail:
        with pytest.raises(AssertionError):
            NN(layers_info=input_value,
               hidden_activations="relu",
               output_activation="relu")
コード例 #11
0
ファイル: test_tf_NN.py プロジェクト: zhushaoquan/nn_builder
def test_embedding_network_can_solve_simple_problem():
    """Tests whether network can solve simple problem using embeddings"""
    X = (np.random.random((N, 5)) - 0.5) * 5.0 + 20.0
    y = (X[:, 0] >= 20) * (X[:, 1] <= 20) * 1.0
    nn_instance = NN(layers_info=[5, 1],
                     columns_of_data_to_be_embedded=[0, 1],
                     embedding_dimensions=[[50, 3], [55, 3]])
    assert solves_simple_problem(X, y, nn_instance)
コード例 #12
0
ファイル: test_tf_NN.py プロジェクト: zhushaoquan/nn_builder
def test_output_head_layers():
    """Tests whether the output head layers get created properly"""
    for output_dim in [[3, 9], [4, 20], [1, 1]]:
        nn_instance = NN(layers_info=[4, 7, 9, output_dim],
                         hidden_activations="relu",
                         output_activation=["softmax", None])
        assert nn_instance.output_layers[0].units == output_dim[0]
        assert nn_instance.output_layers[1].units == output_dim[1]
コード例 #13
0
ファイル: test_tf_NN.py プロジェクト: zhushaoquan/nn_builder
def test_output_heads_error_catching():
    """Tests that having multiple output heads catches errors from user inputs"""
    output_dims_that_should_break = [[[2, 8]], [-33, 33, 33, 33, 33]]
    for output_dim in output_dims_that_should_break:
        with pytest.raises(AssertionError):
            NN(layers_info=[4, 7, 9, output_dim],
               hidden_activations="relu",
               output_activation="relu")

    output_activations_that_should_break = [
        "relu", ["relu"], ["relu", "softmax"]
    ]
    for output_activation in output_activations_that_should_break:
        with pytest.raises(AssertionError):
            NN(layers_info=[4, 7, 9, [4, 6, 1]],
               hidden_activations="relu",
               output_activation=output_activation)
コード例 #14
0
ファイル: test_tf_NN.py プロジェクト: zhushaoquan/nn_builder
def test_output_head_shapes_correct():
    """Tests that the output shape of network is correct when using multiple outpout heads"""
    N = 20
    X = np.random.random((N, 2))
    for _ in range(25):
        output_dim = random.randint(1, 100)
        nn_instance = NN(layers_info=[4, 7, 9, output_dim],
                         hidden_activations="relu")
        out = nn_instance(X)
        assert out.shape[0] == N
        assert out.shape[1] == output_dim

    for output_dim in [[3, 9, 5, 3], [5, 5, 5, 5], [2, 1, 1, 16]]:
        nn_instance = NN(layers_info=[4, 7, 9, output_dim],
                         hidden_activations="relu",
                         output_activation=["softmax", None, None, "relu"])
        out = nn_instance(X)
        assert out.shape[0] == N
        assert out.shape[1] == 20
コード例 #15
0
ファイル: test_tf_NN.py プロジェクト: zhushaoquan/nn_builder
def test_batch_norm_layers_info():
    """Tests whether batch_norm_layers_info method works correctly"""
    for input_dim, output_dim, hidden_units in zip(range(5, 8), range(
            9, 12), [[2, 9, 2], [3, 5, 6], [9, 12, 2]]):
        hidden_units.append(output_dim)
        nn_instance = NN(layers_info=hidden_units,
                         hidden_activations="relu",
                         batch_norm=True,
                         output_activation="relu",
                         initialiser="xavier")
        for layer in nn_instance.batch_norm_layers:
            assert isinstance(layer, tf.keras.layers.BatchNormalization)
        assert len(nn_instance.batch_norm_layers) == len(hidden_units) - 1
コード例 #16
0
ファイル: test_tf_NN.py プロジェクト: zhushaoquan/nn_builder
def test_output_shape_correct():
    """Tests whether network returns output of the right shape"""
    input_dims = [x for x in range(1, 3)]
    output_dims = [x for x in range(4, 6)]
    linear_hidden_units_options = [[2, 3, 4], [2, 9, 1], [55, 55, 55, 234, 15]]
    for input_dim, output_dim, linear_hidden_units in zip(
            input_dims, output_dims, linear_hidden_units_options):
        linear_hidden_units.append(output_dim)
        nn_instance = NN(layers_info=linear_hidden_units,
                         hidden_activations="relu",
                         output_activation="relu",
                         initialiser="xavier")
        data = 2.0 * (np.random.random((25, input_dim)) - 0.5)
        output = nn_instance(data)
        assert output.shape == (25, output_dim)
コード例 #17
0
ファイル: test_tf_NN.py プロジェクト: zhushaoquan/nn_builder
def test_y_range():
    """Tests whether setting a y range works correctly"""
    for _ in range(100):
        val1 = random.random() - 3.0 * random.random()
        val2 = random.random() + 2.0 * random.random()
        lower_bound = min(val1, val2)
        upper_bound = max(val1, val2)
        nn_instance = NN(layers_info=[10, 10, 3],
                         y_range=(lower_bound, upper_bound))
        random_data = 2.0 * (np.random.random((15, 5)) - 0.5)
        out = nn_instance(random_data)
        assert np.sum(out > lower_bound) == 3 * 15, "lower {} vs. {} ".format(
            lower_bound, out)
        assert np.sum(out < upper_bound) == 3 * 15, "upper {} vs. {} ".format(
            upper_bound, out)
コード例 #18
0
ファイル: test_tf_NN.py プロジェクト: zhushaoquan/nn_builder
def test_embedding_layers():
    """Tests whether create_embedding_layers_info method works correctly"""
    for embedding_in_dim_1, embedding_out_dim_1, embedding_in_dim_2, embedding_out_dim_2 in zip(
            range(5, 8), range(3, 6), range(1, 4), range(24, 27)):
        nn_instance = NN(
            layers_info=[5],
            columns_of_data_to_be_embedded=[0, 1],
            embedding_dimensions=[[embedding_in_dim_1, embedding_out_dim_1],
                                  [embedding_in_dim_2, embedding_out_dim_2]])
        for layer in nn_instance.embedding_layers:
            assert isinstance(layer, tf.keras.layers.Embedding)
        assert len(nn_instance.embedding_layers) == 2
        assert nn_instance.embedding_layers[0].input_dim == embedding_in_dim_1
        assert nn_instance.embedding_layers[
            0].output_dim == embedding_out_dim_1
        assert nn_instance.embedding_layers[1].input_dim == embedding_in_dim_2
        assert nn_instance.embedding_layers[
            1].output_dim == embedding_out_dim_2
コード例 #19
0
ファイル: test_tf_NN.py プロジェクト: zhushaoquan/nn_builder
def test_all_initialisers_work():
    """Tests that all initialisers get accepted"""
    nn_instance = NN(layers_info=[10, 10, 1], dropout=0.9999)
    for key in nn_instance.str_to_initialiser_converter.keys():
        model = NN(layers_info=[10, 10, 1], dropout=0.9999, initialiser=key)
        model(X)
コード例 #20
0
ファイル: test_tf_NN.py プロジェクト: zhushaoquan/nn_builder
def test_boston_housing_progress():
    """Tests that network made using CNN module can make progress on MNIST"""
    boston_housing = tf.keras.datasets.boston_housing
    (x_train, y_train), (x_test, y_test) = boston_housing.load_data()

    model = NN(layers_info=[30, 10, 1],
               hidden_activations="relu",
               output_activation=None,
               dropout=0.0,
               initialiser="xavier",
               batch_norm=True,
               y_range=(4.5, 55.0))

    model.compile(optimizer='adam', loss='mse')
    model.fit(x_train, y_train, epochs=200, batch_size=64)
    results = model.evaluate(x_test, y_test)
    assert results < 35

    model = NN(layers_info=[30, 10, 1],
               hidden_activations="relu",
               output_activation=None,
               dropout=0.0,
               initialiser="xavier",
               batch_norm=False)

    model.compile(optimizer='adam', loss='mse')
    model.fit(x_train, y_train, epochs=200, batch_size=64)
    results = model.evaluate(x_test, y_test)
    assert results < 30

    model = NN(layers_info=[30, 10, 1],
               hidden_activations="relu",
               output_activation=None,
               dropout=0.0,
               initialiser="xavier",
               batch_norm=True)

    model.compile(optimizer='adam', loss='mse')
    model.fit(x_train, y_train, epochs=200, batch_size=64)
    results = model.evaluate(x_test, y_test)
    assert results < 30

    model = NN(layers_info=[150, 50, 1],
               hidden_activations="relu",
               output_activation=None,
               dropout=0.05,
               initialiser="xavier",
               batch_norm=False)

    model.compile(optimizer='adam', loss='mse')
    model.fit(x_train, y_train, epochs=200, batch_size=64)
    results = model.evaluate(x_test, y_test)
    assert results < 30
コード例 #21
0
ファイル: test_tf_NN.py プロジェクト: zhushaoquan/nn_builder
def test_print_model_summary():
    nn_instance = NN(layers_info=[10, 10, 1])
    nn_instance.print_model_summary((64, 11))
コード例 #22
0
ファイル: test_tf_NN.py プロジェクト: zhushaoquan/nn_builder
def test_deals_with_None_activation():
    """Tests whether is able to handle user inputting None as output activation"""
    assert NN(layers_info=[10, 10, 3], output_activation=None)