def __init__(self, params): """ :param params: {'num_channels':1, 'num_filters':64, 'kernel_h':5, 'kernel_w':5, 'stride_conv':1, 'pool':2, 'stride_pool':2, 'num_classes':28 'se_block': False, 'drop_out':0.2} """ super(QuickNat, self).__init__() self.encode1 = sm.EncoderBlock(params, se_block_type=se.SELayer.CSSE) params['num_channels'] = 64 self.encode2 = sm.EncoderBlock(params, se_block_type=se.SELayer.CSSE) self.encode3 = sm.EncoderBlock(params, se_block_type=se.SELayer.CSSE) self.encode4 = sm.EncoderBlock(params, se_block_type=se.SELayer.CSSE) self.bottleneck = sm.DenseBlock(params, se_block_type=se.SELayer.CSSE) params['num_channels'] = 128 self.decode1 = sm.DecoderBlock(params, se_block_type=se.SELayer.CSSE) self.decode2 = sm.DecoderBlock(params, se_block_type=se.SELayer.CSSE) self.decode3 = sm.DecoderBlock(params, se_block_type=se.SELayer.CSSE) self.decode4 = sm.DecoderBlock(params, se_block_type=se.SELayer.CSSE) params['num_channels'] = 64 self.classifier = sm.ClassifierBlock(params)
def __init__(self, params): """ :param params: {'num_channels':1, 'num_filters':64, 'kernel_h':5, 'kernel_w':5, 'stride_conv':1, 'pool':2, 'stride_pool':2, 'num_classes':28 'se_block': False, 'drop_out':0.2} """ super(QuickFCNClassifier, self).__init__() self.encode1 = sm.EncoderBlock(params, se_block_type=se.SELayer.CSSE) params['num_channels'] = 64 self.encode2 = sm.EncoderBlock(params, se_block_type=se.SELayer.CSSE) self.encode3 = sm.EncoderBlock(params, se_block_type=se.SELayer.CSSE) self.encode4 = sm.EncoderBlock(params, se_block_type=se.SELayer.CSSE) self.bottleneck = sm.DenseBlock(params, se_block_type=se.SELayer.CSSE) ############Classification Task############ self.classifier = nn.Sequential(nn.Linear(40000, 25), nn.PReLU(), nn.Linear(25, 3))
def __init__(self, params): """ :param params: {'num_channels':1, 'num_filters':64, 'kernel_h':5, 'kernel_w':5, 'stride_conv':1, 'pool':2, 'stride_pool':2, 'num_classes':28 'se_block': False, 'drop_out':0.2} """ super(QuickResNet, self).__init__() self.resultnet = ResUltNet( params) # TODO: Is it right to pass params here too? self.unbottle = nn.Sequential( # input is Z, going into a convolution nn.ConvTranspose2d(64, 32, 4, 1, 0, bias=False), nn.BatchNorm2d(32), nn.ReLU(True), # state size. (ngf*8) x 4 x 4 nn.ConvTranspose2d(32, 16, 4, 2, 1, bias=False), nn.BatchNorm2d(16), nn.ReLU(True), # state size. (ngf*4) x 8 x 8 nn.ConvTranspose2d(16, 8, 4, 2, 1, bias=False), nn.BatchNorm2d(8), nn.ReLU(True), # state size. (ngf*2) x 16 x 16 nn.ConvTranspose2d(8, 3, 4, 2, 1, bias=False), nn.BatchNorm2d(3), nn.ReLU(True)) self.encode1 = sm.EncoderBlock(params, se_block_type=se.SELayer.CSSE) params['num_channels'] = 64 self.encode2 = sm.EncoderBlock(params, se_block_type=se.SELayer.CSSE) self.encode3 = sm.EncoderBlock(params, se_block_type=se.SELayer.CSSE) self.encode4 = sm.EncoderBlock(params, se_block_type=se.SELayer.CSSE) self.bottleneck = sm.DenseBlock(params, se_block_type=se.SELayer.CSSE) self.conv1 = torch.nn.Conv2d(params['num_channels'], 3, kernel_size=1) params['num_channels'] = 128 self.decode1 = sm.DecoderBlock(params, se_block_type=se.SELayer.CSSE) self.decode2 = sm.DecoderBlock(params, se_block_type=se.SELayer.CSSE) self.decode3 = sm.DecoderBlock(params, se_block_type=se.SELayer.CSSE) self.decode4 = sm.DecoderBlock(params, se_block_type=se.SELayer.CSSE) params['num_channels'] = 64 self.classifier = sm.ClassifierBlock(params)
def __init__(self, params): super(Segmentor, self).__init__() params['num_channels'] = 1 self.encode1 = sm.EncoderBlock(params) params['num_channels'] = 64 self.encode2 = sm.EncoderBlock(params) self.encode3 = sm.EncoderBlock(params) self.bottleneck = sm.DenseBlock(params) params['num_channels'] = 128 self.decode1 = sm.DecoderBlock(params, se_block_type=se.SELayer.NONE) self.decode2 = sm.DecoderBlock(params, se_block_type=se.SELayer.NONE) self.decode3 = sm.DecoderBlock(params, se_block_type=se.SELayer.NONE) params['num_channels'] = 64 self.classifier = sm.ClassifierBlock(params) self.sigmoid = nn.Sigmoid()
def __init__(self, params): super(SDnetSegmentor, self).__init__() params['num_channels'] = 1 params['num_filters'] = 64 self.encode1 = sm.EncoderBlock(params) params['num_channels'] = 64 self.encode2 = sm.EncoderBlock(params) self.encode3 = sm.EncoderBlock(params) self.bottleneck = sm.GenericBlock(params) params['num_channels'] = 128 self.decode1 = sm.DecoderBlock(params) self.decode2 = sm.DecoderBlock(params) self.decode3 = sm.DecoderBlock(params) params['num_channels'] = 64 self.classifier = sm.ClassifierBlock(params) self.soft_max = nn.Softmax2d()
def __init__(self, params): super(QuickNat, self).__init__() self.encode1 = sm.EncoderBlock(params, se_block_type=se.SELayer.CSSE) params['num_channels'] = 64 self.encode2 = sm.EncoderBlock(params, se_block_type=se.SELayer.CSSE) self.encode3 = sm.EncoderBlock(params, se_block_type=se.SELayer.CSSE) self.encode4 = sm.EncoderBlock(params, se_block_type=se.SELayer.CSSE) self.bottleneck = sm.DenseBlock(params, se_block_type=se.SELayer.CSSE) params['num_channels'] = 128 self.decode1 = sm.DecoderBlock(params, se_block_type=se.SELayer.CSSE) self.decode2 = sm.DecoderBlock(params, se_block_type=se.SELayer.CSSE) self.decode3 = sm.DecoderBlock(params, se_block_type=se.SELayer.CSSE) self.decode4 = sm.DecoderBlock(params, se_block_type=se.SELayer.CSSE) params['num_channels'] = 64 self.classifier = sm.ClassifierBlock(params)
def __init__(self): super(Network, self).__init__() params['num_channels'] = 1 params['num_class'] = pretrained_num_classes self.encode1 = sm.EncoderBlock(params, se_block_type=se.SELayer.CSSE) params['num_channels'] = 64 self.encode2 = sm.EncoderBlock(params, se_block_type=se.SELayer.CSSE) self.encode3 = sm.EncoderBlock(params, se_block_type=se.SELayer.CSSE) self.encode4 = sm.EncoderBlock(params, se_block_type=se.SELayer.CSSE) self.bottleneck = sm.DenseBlock(params, se_block_type=se.SELayer.CSSE) params['num_channels'] = 128 self.decode1 = sm.DecoderBlock(params, se_block_type=se.SELayer.CSSE) self.decode2 = sm.DecoderBlock(params, se_block_type=se.SELayer.CSSE) self.decode3 = sm.DecoderBlock(params, se_block_type=se.SELayer.CSSE) self.decode4 = sm.DecoderBlock(params, se_block_type=se.SELayer.CSSE) params['num_channels'] = 64 self.classifier = sm.ClassifierBlock(params)
def __init__(self, params): """ :param params: {'num_channels':1, 'num_filters':64, 'kernel_h':5, 'kernel_w':5, 'stride_conv':1, 'pool':2, 'stride_pool':2, 'num_classes':28 'se_block': False, 'drop_out':0.2} """ super(QuickOct, self).__init__() print("NUMBER OF CHANNEL", params['num_channels']) self.encode1 = sm.EncoderBlock(params, se_block_type=params['se_block']) params['num_channels'] = params['num_filters'] self.encode2 = sm.OctaveEncoderBlock(params, se_block_type=params['se_block']) self.encode3 = sm.OctaveEncoderBlock(params, se_block_type=params['se_block']) # self.encode4 = sm.OctaveEncoderBlock(params, se_block_type=params['se_block']) self.bottleneck = sm.OctaveDenseBlock(params, se_block_type=params['se_block']) params['num_channels'] = params['num_filters'] * 2 self.decode1 = sm.OctaveDecoderBlock(params, se_block_type=params['se_block']) self.decode2 = sm.OctaveDecoderBlock(params, se_block_type=params['se_block']) self.decode3 = sm.DecoderBlock(params, se_block_type=params['se_block']) # self.decode4 = sm.DecoderBlock(params, se_block_type=params['se_block']) params['num_channels'] = params['num_filters'] self.classifier = sm.ClassifierBlock(params)