def __init__(self, params): super(Conditioner, self).__init__() params['num_channels'] = 1 self.genblock1 = sm.GenericBlock(params) params['num_channels'] = 64 self.genblock2 = sm.GenericBlock(params) self.genblock3 = sm.GenericBlock(params) self.maxpool = nn.MaxPool2d(kernel_size=params['pool'], stride=params['stride_pool']) self.tanh = nn.Tanh()
def __init__(self, params): super(SDnetConditioner, self).__init__() se_block_type = se.SELayer.SSE params['num_channels'] = 2 params['num_filters'] = 16 self.encode1 = sm.SDnetEncoderBlock(params) params['num_channels'] = 16 self.encode2 = sm.SDnetEncoderBlock(params) self.encode3 = sm.SDnetEncoderBlock(params) self.encode4 = sm.SDnetEncoderBlock(params) self.bottleneck = sm.GenericBlock(params) self.squeeze_conv_bn = nn.Conv2d(in_channels=params['num_filters'], out_channels=1, kernel_size=(1, 1), padding=(0, 0), stride=1) params['num_channels'] = 16 self.decode1 = sm.SDnetDecoderBlock(params) self.decode2 = sm.SDnetDecoderBlock(params) self.decode3 = sm.SDnetDecoderBlock(params) self.decode4 = sm.SDnetDecoderBlock(params) params['num_channels'] = 16 self.classifier = sm.ClassifierBlock(params) self.sigmoid = nn.Sigmoid()
def __init__(self, params): super(SDnetConditioner, self).__init__() se_block_type = se.SELayer.SSE params['num_channels'] = 2 params['num_filters'] = 16 self.encode1 = sm.SDnetEncoderBlock(params) params['num_channels'] = 16 self.encode2 = sm.SDnetEncoderBlock(params) self.encode3 = sm.SDnetEncoderBlock(params) self.encode4 = sm.SDnetEncoderBlock(params) self.bottleneck = sm.GenericBlock(params) params['num_channels'] = 16 self.decode1 = sm.SDnetDecoderBlock(params) self.channel_conv_d1 = nn.Linear(params['num_filters'], 64, bias=True) self.decode2 = sm.SDnetDecoderBlock(params) self.channel_conv_d2 = nn.Linear(params['num_filters'], 64, bias=True) self.decode3 = sm.SDnetDecoderBlock(params) self.channel_conv_d3 = nn.Linear(params['num_filters'], 64, bias=True) self.decode4 = sm.SDnetDecoderBlock(params) self.channel_conv_d4 = nn.Linear(params['num_filters'], 64, bias=True) params['num_channels'] = 16 self.classifier = sm.ClassifierBlock(params) self.sigmoid = nn.Sigmoid()
def __init__(self, params): super(SDnetConditioner, self).__init__() params['num_channels'] = 1 params['num_filters'] = 64 self.encode1 = sm.SDnetEncoderBlock(params) params['num_channels'] = 64 self.encode2 = sm.SDnetEncoderBlock(params) self.encode3 = sm.SDnetEncoderBlock(params) self.bottleneck = sm.GenericBlock(params) params['num_channels'] = 128 self.decode1 = sm.SDnetDecoderBlock(params) self.squeeze_conv_d1 = nn.Conv2d(in_channels=params['num_filters'], out_channels=1, kernel_size=(1, 1), padding=(0, 0), stride=1) self.decode2 = sm.SDnetDecoderBlock(params) self.squeeze_conv_d2 = nn.Conv2d(in_channels=params['num_filters'], out_channels=1, kernel_size=(1, 1), padding=(0, 0), stride=1) self.decode3 = sm.SDnetDecoderBlock(params) self.squeeze_conv_d3 = nn.Conv2d(in_channels=params['num_filters'], out_channels=1, kernel_size=(1, 1), padding=(0, 0), stride=1) params['num_channels'] = 64 self.classifier = sm.ClassifierBlock(params) self.sigmoid = nn.Sigmoid()
def __init__(self, params): super(SDnetConditioner, self).__init__() params['num_channels'] = 2 params['num_filters'] = 16 self.encode1 = sm.SDnetEncoderBlock(params) params['num_channels'] = 16 self.encode2 = sm.SDnetEncoderBlock(params) self.encode3 = sm.SDnetEncoderBlock(params) self.encode4 = sm.SDnetEncoderBlock(params) self.bottleneck = sm.GenericBlock(params) params['num_channels'] = 16 self.decode1 = sm.SDnetDecoderBlock(params) self.decode2 = sm.SDnetDecoderBlock(params) self.decode3 = sm.SDnetDecoderBlock(params) self.decode4 = sm.SDnetDecoderBlock(params) params['num_channels'] = 16 self.classifier = sm.ClassifierBlock(params) self.sigmoid = nn.Sigmoid() self.fc_layer = nn.Linear(params['num_filters'], 64, bias=True)
def __init__(self, params): super(Conditioner, self).__init__() params['num_channels'] = 1 params['num_filters'] = 32 self.genblock1 = sm.GenericBlock(params) self.squeeze_conv1 = nn.Conv2d(in_channels=params['num_filters'], out_channels=1, kernel_size=(1, 1), padding=(0, 0), stride=1) params['num_channels'] = params['num_filters'] params['num_filters'] = 64 self.genblock2 = sm.GenericBlock(params) self.squeeze_conv2 = nn.Conv2d(in_channels=params['num_filters'], out_channels=1, kernel_size=(1, 1), padding=(0, 0), stride=1) params['num_channels'] = params['num_filters'] params['num_filters'] = 128 self.genblock3 = sm.GenericBlock(params) self.squeeze_conv3 = nn.Conv2d(in_channels=params['num_filters'], out_channels=1, kernel_size=(1, 1), padding=(0, 0), stride=1) params['num_channels'] = params['num_filters'] params['num_filters'] = 256 self.genblock4 = sm.GenericBlock(params) self.squeeze_conv4 = nn.Conv2d(in_channels=params['num_filters'], out_channels=1, kernel_size=(1, 1), padding=(0, 0), stride=1) params['num_channels'] = params['num_filters'] params['num_filters'] = 512 self.genblock5 = sm.GenericBlock(params) self.squeeze_conv5 = nn.Conv2d(in_channels=params['num_filters'], out_channels=1, kernel_size=(1, 1), padding=(0, 0), stride=1) self.maxpool = nn.MaxPool2d(kernel_size=params['pool'], stride=params['stride_pool']) self.sigmoid = nn.Sigmoid()
def __init__(self, params): super(SDnetSegmentor, self).__init__() params['num_channels'] = 1 params['num_filters'] = 64 self.encode1 = sm.SDnetEncoderBlock(params) params['num_channels'] = 64 self.encode2 = sm.SDnetEncoderBlock(params) self.encode3 = sm.SDnetEncoderBlock(params) self.bottleneck = sm.GenericBlock(params) params['num_channels'] = 128 self.decode1 = sm.SDnetDecoderBlock(params) self.decode2 = sm.SDnetDecoderBlock(params) self.decode3 = sm.SDnetDecoderBlock(params) params['num_channels'] = 64 self.classifier = sm.ClassifierBlock(params)
def __init__(self, params): super(SDnetSegmentor, self).__init__() params['num_channels'] = 1 params['num_filters'] = 64 self.encode1 = sm.SDnetEncoderBlock(params) params['num_channels'] = 64 + 16 self.encode2 = sm.SDnetEncoderBlock(params) self.encode3 = sm.SDnetEncoderBlock(params) self.encode4 = sm.SDnetEncoderBlock(params) self.bottleneck = sm.GenericBlock(params) self.decode1 = sm.SDnetDecoderBlock(params) self.decode2 = sm.SDnetDecoderBlock(params) self.decode3 = sm.SDnetDecoderBlock(params) self.decode4 = sm.SDnetDecoderBlock(params) params['num_channels'] = 64 self.classifier = sm.ClassifierBlock(params) self.soft_max = nn.Softmax2d() self.sigmoid = nn.Sigmoid()
def __init__(self, params): super(SDnetSegmentor, self).__init__() se_block_type = se.SELayer.SSE params['num_channels'] = 1 params['num_filters'] = 64 self.encode1 = sm.SDnetEncoderBlock(params) params['num_channels'] = 64 self.encode2 = sm.SDnetEncoderBlock(params) self.encode3 = sm.SDnetEncoderBlock(params) self.encode4 = sm.SDnetEncoderBlock(params) self.bottleneck = sm.GenericBlock(params) params['num_channels'] = 128 self.decode1 = sm.SDnetDecoderBlock(params) self.decode2 = sm.SDnetDecoderBlock(params) self.decode3 = sm.SDnetDecoderBlock(params) self.decode4 = sm.SDnetDecoderBlock(params) params['num_channels'] = 64 self.classifier = sm.ClassifierBlock(params) self.soft_max = nn.Softmax2d()
def __init__(self, params): super(SDnetConditioner, self).__init__() se_block_type = se.SELayer.SSE params['num_channels'] = 2 params['num_filters'] = 16 self.encode1 = sm.SDnetEncoderBlock(params) params['num_channels'] = 16 self.encode2 = sm.SDnetEncoderBlock(params) self.encode3 = sm.SDnetEncoderBlock(params) self.encode4 = sm.SDnetEncoderBlock(params) self.bottleneck = sm.GenericBlock(params) self.decode1 = sm.SDnetDecoderBlock(params) self.decode2 = sm.SDnetDecoderBlock(params) self.decode3 = sm.SDnetDecoderBlock(params) self.decode4 = sm.SDnetDecoderBlock(params)