コード例 #1
0
import strengthen_functions

parser = argparse.ArgumentParser()
parser.add_argument('-n', action="store", dest="number")
parser.add_argument('-i',
                    action="store",
                    dest="iterations",
                    default=80000,
                    help="default: 30000")
args = parser.parse_args()
number = int(args.number)
iterations = int(args.iterations)

pf = strengthen_functions.PF81
nn = NeuralNetwork(strength_function=pf,
                   image_scale=8,
                   transmission_history_len=10**4)
'''
train_imgs, _ = skl.load_data()
train_imgs = train_imgs[number]
size = len(train_imgs)
'''

# average_img = skl.average_img_by_number(number)
train_imgs = skl.get_imgs_by_number(number)

plotting_strength = True
if plotting_strength: strength_stats = []
start_time = datetime.datetime.now()
for i in range(iterations):
    _, img = random.choice(train_imgs)
コード例 #2
0
ファイル: nn_growable_6_NN.py プロジェクト: lansiz/neuron
# import seaborn as sns
# import sys
import random

iters = 5 * 10**4

imgs_l = [skl.get_imgs_by_number(i) for i in range(10)]
strength_matrix_l = [
    utils.read_pickle('pkl/nn_growable_' + str(i) + '.pkl') for i in range(10)
]

fig, axes = plt.subplots(2, 2, figsize=(10, 5), sharex=True, sharey=False)
axes = axes.flatten()

pfs = [
    lambda img, matrix: NeuralNetwork.validate_linear(
        img, matrix, gray_max=16, power=0, weight=10),
    lambda img, matrix: NeuralNetwork.validate_linear(
        img, matrix, gray_max=16, power=1, weight=10),
    lambda img, matrix: NeuralNetwork.validate_linear(
        img, matrix, gray_max=16, power=3, weight=10),
    lambda img, matrix: NeuralNetwork.validate_threshold(
        img, matrix, gray_max=16, power=3, threshhold=.2, weight=10)
]

# if True:
# for j, matrix in enumerate(strength_matrix_l):
for k, pf in enumerate(pfs):
    j = 6
    matrix = strength_matrix_l[j]
    results_l = [[], [], [], [], [], [], [], [], [], []]
    for imgs, result in zip(imgs_l, results_l):
コード例 #3
0
ファイル: nn_growable_dist.py プロジェクト: lansiz/neuron
strength_matrix_l = [
    utils.read_pickle('pkl/nn_growable_' + str(i) + '.pkl') for i in range(10)
]

fig, axes = plt.subplots(5, 2, figsize=(3, 6), sharex=True, sharey=True)
axes = axes.flatten()

for j, matrix in enumerate(strength_matrix_l):
    results_l = [[], [], [], [], [], [], [], [], [], []]
    for imgs, result in zip(imgs_l, results_l):
        for i in range(iters):
            img = random.choice(imgs)[1]
            result.append(
                NeuralNetwork.validate_1(img,
                                         matrix,
                                         gray_max=16,
                                         threshhold=.6,
                                         weight=3))

    for i, result in enumerate(results_l):
        if i != j:
            color = 'gray'
            zorder = 0
            line = 1
        else:
            color = 'red'
            zorder = 1
            line = 2
        mu = np.mean(result)
        std = np.std(result)
        # sns.kdeplot(result, color=color, shade=False, shade_lowest=False, alpha=1, zorder=zorder)
コード例 #4
0
import random

random.seed()

iters = 10 * 10 ** 4
num = 0

imgs_l = [skl.get_imgs_by_number(i) for i in range(10)]
strength_matrix_l = [utils.read_pickle('pkl/nn_growable_' + str(i) + '.pkl') for i in range(10)]

# fig, axes = plt.subplots(4, 1, figsize=(6, 6), sharex=True, sharey=False)
fig, axes = plt.subplots(3, 1, figsize=(6, 4), sharex=True, sharey=False)
axes = axes.flatten()

validators = [
    lambda img, matrix: NeuralNetwork.validate_original(img, matrix),
    lambda img, matrix: NeuralNetwork.validate_step(img, matrix, threshold=.6),
    lambda img, matrix: NeuralNetwork.validate_linear(img, matrix, power=3, weight=10)]
    # lambda img, matrix: NeuralNetwork.validate_threshold(img, matrix, power=3, threshhold=.2, weight=10)]

imgs = imgs_l[num]
for k, vldt in enumerate(validators):
    matrix = strength_matrix_l[num]
    results_l = [[], [], [], [], [], [], [], [], [], []]
    for matrix, result in zip(strength_matrix_l, results_l):
        for i in range(iters):
            img = random.choice(imgs)[1]
            result.append(vldt(img, matrix))

    # get the mu and std for z-scores
    results_l_part = [i for i in results_l if i != num]
コード例 #5
0
imgs_l = [skl.get_imgs_by_number(i) for i in range(10)]
matrix_80_l = [
    utils.read_pickle('pkl/nn_growable_80_' + str(i) + '.pkl')
    for i in range(10)
]
matrix_81_l = [
    utils.read_pickle('pkl/nn_growable_81_' + str(i) + '.pkl')
    for i in range(10)
]

# fig, axes = plt.subplots(4, 1, figsize=(6, 6), sharex=True, sharey=False)
fig, axes = plt.subplots(3, 1, figsize=(6, 4), sharex=True, sharey=False)
axes = axes.flatten()

validators = [
    lambda img, matrix: NeuralNetwork.validate_original(img, matrix),
    lambda img, matrix: NeuralNetwork.validate_original(img, matrix),
    # lambda img, matrix: NeuralNetwork.validate_step(img, matrix, threshold=.6),
    lambda img, matrix: NeuralNetwork.validate_linear(
        img, matrix, power=3, weight=100)
]
# lambda img, matrix: NeuralNetwork.validate_threshold(img, matrix, power=3, threshhold=.2, weight=10)]

imgs = imgs_l[num]
for k, (vldt, matrix_l) in enumerate(
        zip(validators, (matrix_81_l, matrix_80_l, matrix_81_l))):
    matrix = matrix_l[num]
    results_l = [[], [], [], [], [], [], [], [], [], []]
    for matrix, result in zip(matrix_l, results_l):
        for i in range(iters):
            img = random.choice(imgs)[1]