コード例 #1
0
def _infer_op_shapes(op_name,
                     attribs,
                     input_shapes,
                     output_counts,
                     custom_shapes={}):
    func = _StandardShapeFuncs.get(op_name)
    if func is None:
        func = custom_shapes.get(op_name)
    if func is None:
        raise nnef.Error(
            "shape inference function is not defined for operation '{}'".
            format(op_name))

    try:
        output_shapes = func(*input_shapes, **attribs)
        if not isinstance(output_shapes, tuple):
            output_shapes = (output_shapes, )

        assert len(output_counts) == len(output_shapes), \
            "number of shapes ({}) does not match number of outputs ({})".format(len(output_counts), len(output_shapes))

        for count, shape in zip(output_counts, output_shapes):
            if isinstance(count, list):
                assert isinstance(shape, list), "expected list of shapes"
                assert count == len(shape), \
                    "number of shapes ({}) does not match number of outputs ({})".format(count, len(shape))

        return output_shapes
    except AssertionError as e:
        raise nnef.Error(
            "while inferring output shape of operation '{}': {}".format(
                op_name, e))
コード例 #2
0
ファイル: shapes.py プロジェクト: mmmika/NNEF-Tools
def infer_shapes(graph, custom_shapes={}):
    # type: (nnef.Graph, dict)->None
    for op in graph.operations:
        func = _StandardShapeFuncs.get(op.name)
        if func is None:
            func = custom_shapes.get(op.name)
        if func is None:
            raise nnef.Error("shape inference function is not defined for operation '{}'".format(op.name))

        input_shapes = [_get_shape(graph, input) for input in op.inputs.values()]

        try:
            output_shapes = func(*input_shapes, **op.attribs)
            if not isinstance(output_shapes, tuple):
                output_shapes = (output_shapes,)

            outputs = op.outputs.values()
            assert len(outputs) == len(output_shapes), \
                "number of shapes ({}) does not match number of outputs ({})".format(len(outputs), len(output_shapes))

            for output, shape in zip(outputs, output_shapes):
                if isinstance(output, list):
                    assert isinstance(shape, list), "expected list of shapes"
                    assert len(output) == len(shape), \
                        "number of shapes ({}) does not match number of outputs ({})".format(len(output), len(shape))
                _set_shape(graph, output, shape)

        except AssertionError as e:
            raise nnef.Error("while inferring shape of tensor(s) '{}' (operation '{}'): {}"
                               .format(', '.join(op.outputs.values()), op.name, e))
コード例 #3
0
def infer_shapes(graph, external_shapes={}, custom_shapes={}):
    # type: (nnef.Graph, dict)->None
    for op in graph.operations:
        func = _StandardShapeFuncs.get(op.name)
        if func is None:
            func = custom_shapes.get(op.name)
        if func is None:
            raise nnef.Error(
                "shape inference function is not defined for operation '{}'".
                format(op.name))

        if op.name == 'external':
            id = op.outputs['output']
            override = external_shapes.get(id)
            if override is not None:
                original = op.attribs['shape']
                assert len(override) == len(original), \
                    "overridden external shape rank ({}) does not match original rank ({})".format(len(override), len(original))
                _set_shape(graph, id, override)
                continue

        input_shapes = [
            _get_shape(graph, input) for input in op.inputs.values()
        ]

        try:
            output_shapes = func(*input_shapes, **op.attribs)
            if not isinstance(output_shapes, tuple):
                output_shapes = (output_shapes, )

            outputs = op.outputs.values()
            assert len(outputs) == len(output_shapes), \
                "number of shapes ({}) does not match number of outputs ({})".format(len(outputs), len(output_shapes))

            for output, shape in zip(outputs, output_shapes):
                if isinstance(output, list):
                    assert isinstance(shape, list), "expected list of shapes"
                    assert len(output) == len(shape), \
                        "number of shapes ({}) does not match number of outputs ({})".format(len(output), len(shape))
                _set_shape(graph, output, shape)

        except AssertionError as e:
            raise nnef.Error(
                "while inferring shape of tensor(s) '{}' (operation '{}'): {}".
                format(', '.join(op.outputs.values()), op.name, e))

    for tensor in graph.tensors.values():
        if tensor.quantization:
            for key, value in tensor.quantization.items():
                if isinstance(value, np.ndarray):
                    assert _broadcastable(value.shape, tensor.shape)