コード例 #1
0
def get_test_data():
    '''
    Takes in the data for GAIT and resizes the array in the form most suitable for the train
    '''
    Final_Array = np.zeros(shape=(20, 9, 2))
    trainer_vid("test/pic")
    for j in range(20):
        image = imread("test/pic" + str(j) + ".PNG", mode='RGB')

        image_batch = data_to_input(image)

        # Compute prediction with the CNN
        outputs_np = sess.run(outputs, feed_dict={inputs: image_batch})
        scmap, locref, _ = predict.extract_cnn_output(outputs_np, cfg)

        # Extract maximum scoring location from the heatmap, assume 1 person
        pose = predict.argmax_pose_predict(scmap, locref, cfg.stride)

        temp = np.zeros(shape=(9, 2))
        list_indexes = [0, 1, 4, 5, 6, 7, 10, 11, 13]
        for k in range(9):
            temp[k] = pose[list_indexes[k]][0:2]
        Final_Array[j] = temp
    print(Final_Array.shape)
    temp2 = np.zeros(shape=(2, 20, 9))
    temp2[0] = Final_Array[:, :, 0]
    temp2[1] = Final_Array[:, :, 1]
    Answer = np.zeros(shape=(9, 2, 20))
    for i in range(9):
        Answer[i] = temp2[:, :, i]
    print(Answer.shape)
    return Answer
コード例 #2
0
def im_process(sess, cfg, inputs, outputs, image, out_port, fig="preview"):

    image_batch = data_to_input(image)

    # image = image[:, :, (2, 1, 0)]    // Remove comment to get "good" image in opencv
    timer = Timer()
    timer.tic()
    # Compute prediction with the CNN
    outputs_np = sess.run(outputs, feed_dict={inputs: image_batch})
    scmap, locref, _ = predict.extract_cnn_output(outputs_np, cfg)

    # Extract maximum scoring location from the heatmap, assume 1 person
    pose = predict.argmax_pose_predict(scmap, locref, cfg.stride)

    timer.toc()
    print('Detection took {:.3f}s'.format(timer.total_time))

    # Visualise
    # visualize.show_heatmaps(cfg, image, scmap, pose)
    # plt.figure()
    # plt.imshow(visualize.visualize_joints(image, pose))
    CONF_THRES = 0.8

    stream_parts(out_port, pose)
    image = draw_links(image, pose)
    image = visualize.visualize_joints(image, pose, threshold=CONF_THRES)
    if args.cv_show:
        cv2.imshow(fig, image)
    return image
コード例 #3
0
def main():

    # paths to setup
    annotation_path = '/home/babybrain/Escritorio/300145_via.json'
    frames_path = '/home/babybrain/Escritorio/300145'

    # get the x-y anotations for each frame
    annotations = load_annotations(annotation_path)

    # get x, y positions for a certain part
    part_id_index = 4  # we'll get elbows, need left and right (algorithm doesn't discriminate)
    file_anno, x_anno_r, y_anno_r = get_xy_for('r-elbow', annotations)
    _, x_anno_l, y_anno_l = get_xy_for('l-elbow', annotations)

    # get the x,y model prediction for each frame annotated
    cfg = load_config(
        "/home/babybrain/PycharmProjects/pose-tensorflow/demo/pose_cfg_babybrain.yaml"
    )
    # Load and setup CNN part detector
    sess, inputs, outputs = predict.setup_pose_prediction(cfg)

    # run session for each frame image annotated
    x_model = np.empty(len(file_anno))
    y_model = np.empty(len(file_anno))
    for index, an_image in enumerate(file_anno):
        infile = "{path}/{name}".format(path=frames_path, name=an_image)
        image = imread(infile, mode='RGB')
        image_batch = data_to_input(image)

        # Compute prediction with CNN
        outputs_np = sess.run(outputs, feed_dict={inputs: image_batch})
        scmap, locref, _ = predict.extract_cnn_output(outputs_np, cfg)

        # Extract maximum scoring location from the heatmap, assume 1 person
        pose = predict.argmax_pose_predict(scmap, locref, cfg.stride)
        x_model[index] = pose[part_id_index, 0]
        y_model[index] = pose[part_id_index, 1]

    # now calculate distances
    distances_r = calculate_distances(x_model, y_model, x_anno_r, y_anno_r)
    distances_l = calculate_distances(x_model, y_model, x_anno_l, y_anno_l)

    # merge the best distance results
    distances = [min(xr, xl) for xr, xl in zip(distances_r, distances_l)]
    distances = np.array(distances)

    distance_steps, rates = detection_rate(distances, nsteps=50)
    rates = rates * 100

    # finally plot the graph
    fig, ax = plt.subplots()
    ax.plot(distance_steps, rates)

    ax.set_xlabel('Normalized Distance')
    ax.set_ylabel('Detection %')
    ax.set_title('Distance threshold vs Detection Ratio')
    ax.set_xlim([0, 0.5])

    plt.show()
コード例 #4
0
ファイル: utils.py プロジェクト: Saduras/DanceNN
def preprocess(video_name, duration):
    source_path = f'./data/video/{video_name}.mp4'

    csv_base_path = './data/poses/'
    if not os.path.exists(csv_base_path):
        os.makedirs(csv_base_path)
    csv_path = f'{csv_base_path}{video_name}_poses.csv'

    audio_base_path = './data/audio/'
    if not os.path.exists(audio_base_path):
        os.makedirs(audio_base_path)
    audio_path = f'{audio_base_path}{video_name}.mp3'

    start_time = datetime.now()

    video = mpe.VideoFileClip(source_path)
    if duration < 0:
        duration = video.duration

    frame_count = int(video.fps * duration)
    frame_length = 1 / video.fps
    print(
        f'video length: {video.duration}s fps: {video.fps} frame count: {frame_count}'
    )

    # Load and setup CNN part detector
    cfg = load_config('./pose_cfg.yaml')
    sess, inputs, outputs = predict.setup_pose_prediction(cfg)
    print('pose model loaded')

    poses = []
    times = []
    for i in range(frame_count):
        t = i * frame_length
        frame = video.get_frame(t)

        image_batch = data_to_input(frame)

        # Compute prediction with the CNN
        outputs_np = sess.run(outputs, feed_dict={inputs: image_batch})
        scmap, locref, _ = predict.extract_cnn_output(outputs_np, cfg)

        # Extract maximum scoring location from the heatmap, assume 1 person
        pose = predict.argmax_pose_predict(scmap, locref, cfg.stride)
        poses.append(pose)
        times.append(t)

        if i % 100 == 0:
            print(
                f'processed frame: {i}/{frame_count} elapsed time: {datetime.now() - start_time}',
                end='\r')

    sess.close()
    print(f'saving poses at {csv_path}')
    save_poses(np.array(poses), times, cfg, csv_path)
    print(f'saving audio at {audio_path}')
    video.audio.write_audiofile(audio_path)
    print(f'total time: {datetime.now() - start_time}')
コード例 #5
0
ファイル: AnalyzeVideos.py プロジェクト: sot-iris/DeepLabCut
def getpose(image, cfg, outputs, outall=False):
    ''' Adapted from DeeperCut, see pose-tensorflow folder'''
    image_batch = data_to_input(skimage.color.gray2rgb(image))
    outputs_np = sess.run(outputs, feed_dict={inputs: image_batch})
    scmap, locref = predict.extract_cnn_output(outputs_np, cfg)
    pose = predict.argmax_pose_predict(scmap, locref, cfg.stride)
    if outall:
        return scmap, locref, pose
    else:
        return pose
コード例 #6
0
ファイル: pose.py プロジェクト: TheLostDesu/sirius-poseml
def get_pose(image, d=cfg):
    image = resize_image(image)

    image_batch = data_to_input(image)

    outputs_np = d['sess'].run(d['outputs'],
                               feed_dict={d['inputs']: image_batch})
    scmap, locref, _ = predict.extract_cnn_output(outputs_np, d['cfg'])

    pose = predict.argmax_pose_predict(scmap, locref, d['cfg'].stride)
    return pose
コード例 #7
0
ファイル: test.py プロジェクト: nichtsen/pose-reg
def test_net(visualise, cache_scoremaps):
    logging.basicConfig(level=logging.INFO)

    cfg = load_config()
    dataset = create_dataset(cfg)
    dataset.set_shuffle(False)
    dataset.set_test_mode(True)

    sess, inputs, outputs = setup_pose_prediction(cfg)

    if cache_scoremaps:
        out_dir = cfg.scoremap_dir
        if not os.path.exists(out_dir):
            os.makedirs(out_dir)

    num_images = dataset.num_images
    predictions = np.zeros((num_images, ), dtype=np.object)

    for k in range(num_images):
        print('processing image {}/{}'.format(k, num_images - 1))

        batch = dataset.next_batch()

        outputs_np = sess.run(outputs, feed_dict={inputs: batch[Batch.inputs]})

        scmap, locref, pairwise_diff = extract_cnn_output(outputs_np, cfg)

        pose = argmax_pose_predict(scmap, locref, cfg.stride)

        pose_refscale = np.copy(pose)
        pose_refscale[:, 0:2] /= cfg.global_scale
        predictions[k] = pose_refscale

        if visualise:
            img = np.squeeze(batch[Batch.inputs]).astype('uint8')
            visualize.show_heatmaps(cfg, img, scmap, pose)
            visualize.waitforbuttonpress()

        if cache_scoremaps:
            base = os.path.basename(batch[Batch.data_item].im_path)
            raw_name = os.path.splitext(base)[0]
            out_fn = os.path.join(out_dir, raw_name + '.mat')
            scipy.io.savemat(out_fn,
                             mdict={'scoremaps': scmap.astype('float32')})

            out_fn = os.path.join(out_dir, raw_name + '_locreg' + '.mat')
            if cfg.location_refinement:
                scipy.io.savemat(
                    out_fn, mdict={'locreg_pred': locref.astype('float32')})

    scipy.io.savemat('predictions.mat', mdict={'joints': predictions})

    sess.close()
コード例 #8
0
def test_net(visualise, cache_scoremaps):
    logging.basicConfig(level=logging.INFO)

    cfg = load_config()
    dataset = create_dataset(cfg)
    dataset.set_shuffle(False)
    dataset.set_test_mode(True)

    sess, inputs, outputs = setup_pose_prediction(cfg)

    if cache_scoremaps:
        out_dir = cfg.scoremap_dir
        if not os.path.exists(out_dir):
            os.makedirs(out_dir)

    num_images = dataset.num_images
    predictions = np.zeros((num_images,), dtype=np.object)

    for k in range(num_images):
        print('processing image {}/{}'.format(k, num_images-1))

        batch = dataset.next_batch()

        outputs_np = sess.run(outputs, feed_dict={inputs: batch[Batch.inputs]})

        scmap, locref, pairwise_diff = extract_cnn_output(outputs_np, cfg)

        pose = argmax_pose_predict(scmap, locref, cfg.stride)

        pose_refscale = np.copy(pose)
        pose_refscale[:, 0:2] /= cfg.global_scale
        predictions[k] = pose_refscale

        if visualise:
            img = np.squeeze(batch[Batch.inputs]).astype('uint8')
            visualize.show_heatmaps(cfg, img, scmap, pose)
            visualize.waitforbuttonpress()

        if cache_scoremaps:
            base = os.path.basename(batch[Batch.data_item].im_path)
            raw_name = os.path.splitext(base)[0]
            out_fn = os.path.join(out_dir, raw_name + '.mat')
            scipy.io.savemat(out_fn, mdict={'scoremaps': scmap.astype('float32')})

            out_fn = os.path.join(out_dir, raw_name + '_locreg' + '.mat')
            if cfg.location_refinement:
                scipy.io.savemat(out_fn, mdict={'locreg_pred': locref.astype('float32')})

    scipy.io.savemat('predictions.mat', mdict={'joints': predictions})

    sess.close()
コード例 #9
0
def get_position(image, prev_pos):
    x = 0
    y = 0
    cropped_image = image
    if prev_pos[0] > 0 and prev_pos[1] > 0:
        BOX_SIZE = 120
        x = max(0, prev_pos[0] - BOX_SIZE / 2)
        y = max(0, prev_pos[1] - BOX_SIZE / 2)
        cropped_image = image[y:(y + BOX_SIZE), x:(x + BOX_SIZE)]
    ''' Adapted from DeeperCut, see pose-tensorflow folder'''
    image_batch = data_to_input(skimage.color.gray2rgb(cropped_image))
    outputs_np = sess.run(outputs, feed_dict={inputs: image_batch})
    scmap, locref = predict.extract_cnn_output(outputs_np, cfg)
    pose = predict.argmax_pose_predict(scmap, locref, cfg.stride)
    pose[0][0] += x
    pose[0][1] += y
    return pose[0][0], pose[0][1], pose[0][2]
コード例 #10
0
def getpose(image, cfg, outputs, outall=False):
	''' Adapted from DeeperCut, see pose-tensorflow folder'''
	# image_batch = data_to_input(skimage.color.gray2rgb(image))
	image_batch = image
	outputs_np = sess.run(outputs, feed_dict={inputs: image_batch})
	scmap, locref = predict.extract_cnn_output(outputs_np, cfg)
	img_num = scmap.shape[0]
	

	pose = np.empty((image_batch.shape[0], cfg.num_joints*3), dtype='float64') # times 3 because each joint has x, y, and confidence values
	
	for i in range(img_num):
		pose[i] = predict.argmax_pose_predict(scmap[i], locref[i], cfg.stride).flatten()

	
	if outall:
		return scmap, locref, pose
	else:
		return pose
コード例 #11
0
ファイル: utils.py プロジェクト: Saduras/DanceNN
def predict_frame(video, t):
    frame_count = int(video.fps * video.duration)
    frame_length = 1 / video.fps

    # Load and setup CNN part detector
    cfg = load_config('./pose_cfg.yaml')
    sess, inputs, outputs = predict.setup_pose_prediction(cfg)

    frame = video.get_frame(t)

    image_batch = data_to_input(frame)

    # Compute prediction with the CNN
    outputs_np = sess.run(outputs, feed_dict={inputs: image_batch})
    scmap, locref, _ = predict.extract_cnn_output(outputs_np, cfg)

    # Extract maximum scoring location from the heatmap, assume 1 person
    pose = predict.argmax_pose_predict(scmap, locref, cfg.stride)

    return pose
コード例 #12
0
def disp_pic(new=False, where="your_file4"):
    '''
    Displays image
    '''
    if (new):
        new_pic("QWERTY12345")
        where = "QWERTY12345"
    image = imread(where + ".PNG", mode='RGB')

    image_batch = data_to_input(image)

    # Compute prediction with the CNN
    outputs_np = sess.run(outputs, feed_dict={inputs: image_batch})
    scmap, locref, _ = predict.extract_cnn_output(outputs_np, cfg)

    # Extract maximum scoring location from the heatmap, assume 1 person
    pose = predict.argmax_pose_predict(scmap, locref, cfg.stride)

    visualize.show_heatmaps(cfg, image, scmap, pose)
    visualize.waitforbuttonpress()
コード例 #13
0
def arms(new=False, where="your_file"):
    '''
    Does arm_span and arm_span_est
    '''
    scale = 0  #Number of inches per pixel
    if (new):
        new_pic(where + ".PNG")
    image = imread(where + ".PNG", mode='RGB')

    image_batch = data_to_input(image)

    # Compute prediction with the CNN
    outputs_np = sess.run(outputs, feed_dict={inputs: image_batch})
    scmap, locref, _ = predict.extract_cnn_output(outputs_np, cfg)

    # Extract maximum scoring location from the heatmap, assume 1 person
    pose = predict.argmax_pose_predict(scmap, locref, cfg.stride)

    scale = set_scale(pose)
    print(arm_span(pose, scale))
    print(arm_span_est(pose, scale))
    disp_pic(where=where)
コード例 #14
0
def get_person_data(person):
    '''
    Takes in the data for GAIT and resizes the array in the form most suitable for the train
    '''
    Final_Array = np.zeros(shape=(15, 20, 9, 2))
    for i in range(15):
        trainer_vid("walk_data/" + person + "/vid" + str(i) + "/pic")
        if (input("Video index: " + str(i) +
                  " has been taken. Type yeet to leave:\n") == "yeet"):
            return
    for i in range(15):
        for j in range(20):
            image = imread("walk_data/" + person + "/vid" + str(i) + "/pic" +
                           str(j) + ".PNG",
                           mode='RGB')

            image_batch = data_to_input(image)

            # Compute prediction with the CNN
            outputs_np = sess.run(outputs, feed_dict={inputs: image_batch})
            scmap, locref, _ = predict.extract_cnn_output(outputs_np, cfg)

            # Extract maximum scoring location from the heatmap, assume 1 person
            pose = predict.argmax_pose_predict(scmap, locref, cfg.stride)

            temp = np.zeros(shape=(9, 2))
            list_indexes = [0, 1, 4, 5, 6, 7, 10, 11, 13]
            for k in range(9):
                temp[k] = pose[list_indexes[k]][0:2]
            Final_Array[i][j] = temp

        print(str(i) + " is finished")
    print(Final_Array.shape)
    Answer = np.zeros(shape=(9, 15, 20, 2))
    for i in range(9):
        Answer[i] = Final_Array[:, :, i, :]
    print(Answer.shape)
    return Answer
コード例 #15
0
def play():

    global VIDEO

    VIDEO = True

    cap = cv2.VideoCapture(0)  #lancement de la caméra

    cap.set(
        3, 160)  #redimensionnement de la video (reduire la taille des données)
    cap.set(4, 120)

    while VIDEO:

        # Capture frame-by-frame
        ret, image = cap.read()
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

        image_batch = data_to_input(image)

        # Compute prediction with the CNN
        outputs_np = sess.run(outputs, feed_dict={inputs: image_batch})
        scmap, locref, _ = predict.extract_cnn_output(outputs_np, cfg)

        # print (scmap)
        # Extract maximum scoring location from the heatmap, assume 1 person
        pose = predict.argmax_pose_predict(scmap, locref, cfg.stride)

        # Visualise
        #visualize.show_heatmaps(cfg, image, scmap, pose)
        visim = visualize.visualize_joints(image, pose)
        #visim = image

        fenetre_fft.display_image(visim)
        print("OK")

    cv2.VideoCapture(0).release()  #extinction de la camera
コード例 #16
0
def kick_vid(new=False):
    '''
    Takes a video, takes 40 frames from the video, maps the body in each, and finds the maximum height
    '''
    shoe_size = int(input("What is your shoe size (US):\n"))
    scale = 0  #Number of inches per pixel
    if (new):
        vid_view(sec=10)
        print("GO")
        vid_pics(sec=4)
    ans = []
    for i in range(40):
        image = imread("temp/vid_pic" + str(i) + ".PNG", mode='RGB')

        image_batch = data_to_input(image)

        # Compute prediction with the CNN
        outputs_np = sess.run(outputs, feed_dict={inputs: image_batch})
        scmap, locref, _ = predict.extract_cnn_output(outputs_np, cfg)

        # Extract maximum scoring location from the heatmap, assume 1 person
        pose = predict.argmax_pose_predict(scmap, locref, cfg.stride)

        if (i == 0):
            scale = set_scale(pose)
        ans.append(kick_height(pose, scale))
    cv2.destroyAllWindows()
    ans = np.array(ans)
    print(ans)
    print("We measured " + str(max(ans)) + " using the ankles as our points")
    print("The true value is approximately " +
          str(max(ans) + (4 / 3 * shoe_size)))
    print(np.argmax(ans))

    # Visualise
    disp_pic(where="temp/vid_pic" + str(np.argmax(ans)))
コード例 #17
0
    # Compute predictions over images
    ##################################################

    for imageindex, imagename in tqdm(enumerate(Data.index)):
        image = io.imread(os.path.join(models_folder_path,
                                       unaugmented_folder_name, 'data-' + Task,
                                       imagename),
                          mode='RGB')
        image = skimage.color.gray2rgb(image)
        image_batch = data_to_input(image)
        # Compute prediction with the CNN
        outputs_np = sess.run(outputs, feed_dict={inputs: image_batch})
        scmap, locref = predict.extract_cnn_output(outputs_np, cfg)

        # Extract maximum scoring location from the heatmap, assume 1 person
        pose = predict.argmax_pose_predict(scmap, locref, cfg.stride)
        PredicteData[imageindex, :] = pose.flatten(
        )  # NOTE: thereby     cfg_test['all_joints_names'] should be same order as bodyparts!

    index = pd.MultiIndex.from_product(
        [[DLCscorer], cfg['all_joints_names'], ['x', 'y', 'likelihood']],
        names=['scorer', 'bodyparts', 'coords'])

    # Saving results:
    auxiliaryfunctions.attempttomakefolder("Results")

    DataMachine = pd.DataFrame(PredicteData,
                               columns=index,
                               index=Data.index.values)
    DataMachine.to_hdf(os.path.join("Results", DLCscorer + '.h5'),
                       'df_with_missing',
コード例 #18
0
ファイル: main.py プロジェクト: justiniansiah/Aegis
        def poser():
            global state
            global points
            global reps

            import os
            import sys
            import cv2
            import time
            import numpy as np

            sys.path.append(os.path.dirname(__file__) + "/../")

            from scipy.misc import imread

            from config import load_config
            from nnet import predict
            from util import visualize
            from dataset.pose_dataset import data_to_input
            cfg = load_config("demo/pose_cfg.yaml")

            # Load and setup CNN part detector
            sess2, inputs, outputs = predict.setup_pose_prediction(cfg)

            camera = cv2.VideoCapture(0)
            # Read image from file

            prevPoints = -1

            while self.running:
                r, image = camera.read()

                image_batch = data_to_input(image)

                # Compute prediction with the CNN
                outputs_np = sess2.run(outputs,
                                       feed_dict={inputs: image_batch})
                scmap, locref, _ = predict.extract_cnn_output(outputs_np, cfg)

                # Extract maximum scoring location from the heatmap, assume 1 person
                pose = predict.argmax_pose_predict(scmap, locref, cfg.stride)

                # Visualise
                data = visualize.visualize_joints(image, pose)
                frame = cv2.cvtColor(data, 4)
                img = QtGui.QImage(frame, frame.shape[1], frame.shape[0],
                                   QtGui.QImage.Format_RGB888)
                pix = QtGui.QPixmap.fromImage(img)
                try:
                    self.lblVideo.setPixmap(pix)
                except:
                    return

                arr = []
                for i in range(14):
                    arr += pose[i].tolist()[0:2]

                predictedPose = sess.run(prediction, feed_dict={X: [arr]})
                processPose(predictedPose)

                if prevPoints != points:
                    print("Current points: " + str(points))
                    prevPoints = points
コード例 #19
0
from scipy.misc import imread

from config import load_config
from nnet import predict
from util import visualize
from dataset.pose_dataset import data_to_input


cfg = load_config("demo/pose_cfg.yaml")

# Load and setup CNN part detector
sess, inputs, outputs = predict.setup_pose_prediction(cfg)

# Read image from file
file_name = "demo/image.png"
image = imread(file_name, mode='RGB')

image_batch = data_to_input(image)

# Compute prediction with the CNN
outputs_np = sess.run(outputs, feed_dict={inputs: image_batch})
scmap, locref, _ = predict.extract_cnn_output(outputs_np, cfg)

# Extract maximum scoring location from the heatmap, assume 1 person
pose = predict.argmax_pose_predict(scmap, locref, cfg.stride)

# Visualise
visualize.show_heatmaps(cfg, image, scmap, pose)
visualize.waitforbuttonpress()
コード例 #20
0
# Read all images, call cnn model and make predictions about human main body parts
for images in glob.glob(pose_image_resources_warrior):
    try:
        image_name = images.title()
        image = plt.imread(images)
        picture_name.append(image_name)
        image_batch: ndarray = data_to_input(image)

        # Compute prediction with the CNN
        outputs_np = sess.run(outputs, feed_dict={inputs: image_batch})

        scmap, locref, _ = predict.extract_cnn_output(outputs_np, cfg)

        # Extract maximum scoring location from the heatmap, assume 1 person
        pose: ndarray = predict.argmax_pose_predict(scmap, locref, cfg.stride)
        # print(pose.toarr)

        # Visualise
        # visualize.show_heatmaps(cfg, image, scmap, pose)
        # visualize.waitforbuttonpress()

        features_df = list(chain.from_iterable(pose))
        y0 = '_'
        features_df.append(y0)
        y1 = '_'
        features_df.append(y1)
        features.append(features_df)

        # print(features_df)
        # this needs reshape --> features_pandas = pd.DataFrame(features_df, columns=labels)
コード例 #21
0
def test_net(visualise, cache_scoremaps):
    # 打开python的日志功能
    logging.basicConfig(level=logging.INFO)

    # 加载配置文件
    cfg = load_config()
    # 根据配置文件中的信息产生数据读取类的实例
    dataset = create_dataset(cfg)
    # 不用对数据进行洗牌
    dataset.set_shuffle(False)
    # 告诉数据读取类没有类标,即处于测试模式
    dataset.set_test_mode(True)

    # 该函数返回session,输入算子,输出算子
    sess, inputs, outputs = setup_pose_prediction(cfg)

    # 是否需要保存测试过程中的heatmap
    if cache_scoremaps:
        # 保存heatmap的目录
        out_dir = cfg.scoremap_dir
        # 目录不存在则创建
        if not os.path.exists(out_dir):
            os.makedirs(out_dir)

    # 图片个数
    num_images = dataset.num_images
    # 预测的关节坐标都保存在这里
    predictions = np.zeros((num_images, ), dtype=np.object)

    for k in range(num_images):
        print('processing image {}/{}'.format(k, num_images - 1))

        # 获得一批数据
        batch = dataset.next_batch()

        # 进行预测
        outputs_np = sess.run(outputs, feed_dict={inputs: batch[Batch.inputs]})

        # 得到heatmap和精细化的heatmap
        scmap, locref = extract_cnn_output(outputs_np, cfg)

        # 获得最终的关节坐标
        '''
        pose = [ [ pos_f8[::-1], [scmap[maxloc][joint_idx]] ] .... ..... ....   ]
        用我的话说就是下面的结构
        pose = [ [关节的坐标,  关节坐标的置信度] .... ..... ....  ]
        '''
        pose = argmax_pose_predict(scmap, locref, cfg.stride)

        pose_refscale = np.copy(pose)
        # 除以尺度,就能恢复到未经过缩放的图像的坐标系上去
        # 注意0:2是左开右闭的区间只取到了0和1
        pose_refscale[:, 0:2] /= cfg.global_scale
        predictions[k] = pose_refscale

        if visualise:
            # 获取图片
            img = np.squeeze(batch[Batch.inputs]).astype('uint8')
            # 显示heatmap
            visualize.show_heatmaps(cfg, img, scmap, pose)
            # 等待按键按下
            visualize.waitforbuttonpress()

        if cache_scoremaps:
            # 保存heatmap
            base = os.path.basename(batch[Batch.data_item].im_path)
            raw_name = os.path.splitext(base)[0]
            out_fn = os.path.join(out_dir, raw_name + '.mat')
            scipy.io.savemat(out_fn,
                             mdict={'scoremaps': scmap.astype('float32')})

            # 保存精细化关节定位的heatmap
            out_fn = os.path.join(out_dir, raw_name + '_locreg' + '.mat')
            if cfg.location_refinement:
                scipy.io.savemat(
                    out_fn, mdict={'locreg_pred': locref.astype('float32')})

    # 将最终预测的关节坐标保存起来
    scipy.io.savemat('predictions.mat', mdict={'joints': predictions})

    sess.close()
コード例 #22
0
ファイル: main.py プロジェクト: dveselov/runtech
def get_frame_pose(frame):
    image_batch = data_to_input(frame)
    outputs_np = sess.run(outputs, feed_dict={inputs: image_batch})
    scmap, locref, _ = predict.extract_cnn_output(outputs_np, cfg)
    # Extract maximum scoring location from the heatmap, assume 1 person
    return predict.argmax_pose_predict(scmap, locref, cfg.stride)