def run(a_shape=(7, 15), b_shape=(7, 15), a_dtype=ng.int32, b_dtype=ng.int32, c_dtype=ng.int32, par=1, axi_datawidth=32, silent=False, filename=None, simtype='iverilog', outputfile=None): # pytorch model model = MatrixMul() # Pytorch to ONNX onnx_filename = 'onnx_matrix_mul.onnx' dummy_a = torch.randn(*a_shape) dummy_b = torch.randn(*b_shape) dummy_inputs = (dummy_a, dummy_b) input_names = ['a', 'b'] output_names = ['c'] model.eval() torch.onnx.export(model, dummy_inputs, onnx_filename, input_names=input_names, output_names=output_names) # -------------------- # (1) Represent a DNN model as a dataflow by NNgen operators # -------------------- # ONNX to NNgen value_dtypes = {'a': a_dtype, 'b': b_dtype, 'c': c_dtype} (outputs, placeholders, variables, constants, operators) = ng.from_onnx(onnx_filename, value_dtypes=value_dtypes, default_placeholder_dtype=ng.int32, default_variable_dtype=ng.int32, default_constant_dtype=ng.int32, default_operator_dtype=ng.int32, default_scale_dtype=ng.int32, default_bias_dtype=ng.int32, disable_fusion=False) # -------------------- # (2) Assign quantized weights to the NNgen operators # -------------------- input_scale_factors = {'a': 10.0, 'b': 15.0} ng.quantize(outputs, input_scale_factors) # -------------------- # (3) Assign hardware attributes # -------------------- for op in operators.values(): if isinstance(op, ng.scaled_multiply): op.attribute(par=par) # -------------------- # (4) Verify the DNN model behavior by executing the NNgen dataflow as a software # -------------------- a = placeholders['a'] b = placeholders['b'] c = outputs['c'] # verification data input_a = np.arange(a.length, dtype=np.int64).reshape(a.shape) % [17] input_b = (np.arange(b.length, dtype=np.int64).reshape(b.shape) + [100]) % [13] # execution on pytorch model_a = input_a.astype(np.float32) if a.perm is not None: model_a = np.transpose(model_a, a.reversed_perm) model_b = input_b.astype(np.float32) if b.perm is not None: model_b = np.transpose(model_b, b.reversed_perm) model.eval() model_c = model(torch.from_numpy(model_a), torch.from_numpy(model_b)).detach().numpy() if a.perm is not None: model_c = np.transpose(model_c, a.perm) scaled_model_c = model_c * c.scale_factor # software-based verification va = input_a * input_scale_factors['a'] va = np.clip(va, -1.0 * (2**(a.dtype.width - 1) - 1), 1.0 * (2**(a.dtype.width - 1) - 1)) va = np.round(va).astype(np.int64) vb = input_b * input_scale_factors['b'] vb = np.clip(vb, -1.0 * (2**(b.dtype.width - 1) - 1), 1.0 * (2**(b.dtype.width - 1) - 1)) vb = np.round(vb).astype(np.int64) eval_outs = ng.eval([c], a=va, b=vb) vc = eval_outs[0] mean_square_error = np.sum((vc - scaled_model_c)**2) / vc.size corrcoef = np.corrcoef(model_c.reshape([-1]), vc.reshape([-1])) # breakpoint() # -------------------- # (5) Convert the NNgen dataflow to a hardware description (Verilog HDL and IP-XACT) # -------------------- targ = ng.to_veriloggen([c], 'onnx_matrix_mul', silent=silent, config={'maxi_datawidth': axi_datawidth}) # -------------------- # (6) Simulate the generated hardware by Veriloggen and Verilog simulator # -------------------- if simtype is None: sys.exit() # to memory image param_data = ng.export_ndarray([c]) param_bytes = len(param_data) variable_addr = int( math.ceil( max(a.addr + a.memory_size, b.addr + b.memory_size) / 4096)) * 4096 check_addr = int(math.ceil((variable_addr + param_bytes) / 4096)) * 4096 tmp_addr = int(math.ceil((check_addr + c.memory_size) / 4096)) * 4096 memimg_datawidth = 32 mem = np.zeros([1024 * 1024 * 8 // (memimg_datawidth // 8)], dtype=np.int64) mem = mem + [100] # placeholder axi.set_memory(mem, va, memimg_datawidth, a_dtype.width, a.addr, max(int(math.ceil(axi_datawidth / a_dtype.width)), par)) axi.set_memory(mem, vb, memimg_datawidth, b_dtype.width, b.addr, max(int(math.ceil(axi_datawidth / b_dtype.width)), par)) # parameters (variable and constant) axi.set_memory(mem, param_data, memimg_datawidth, 8, variable_addr) # verification data axi.set_memory(mem, vc, memimg_datawidth, c_dtype.width, check_addr, max(int(math.ceil(axi_datawidth / c_dtype.width)), par)) # test controller m = Module('test') params = m.copy_params(targ) ports = m.copy_sim_ports(targ) clk = ports['CLK'] resetn = ports['RESETN'] rst = m.Wire('RST') rst.assign(Not(resetn)) # AXI memory model if outputfile is None: outputfile = os.path.splitext(os.path.basename(__file__))[0] + '.out' memimg_name = 'memimg_' + outputfile memory = axi.AxiMemoryModel(m, 'memory', clk, rst, datawidth=axi_datawidth, memimg=mem, memimg_name=memimg_name, memimg_datawidth=memimg_datawidth) memory.connect(ports, 'maxi') # AXI-Slave controller _saxi = vthread.AXIMLite(m, '_saxi', clk, rst, noio=True) _saxi.connect(ports, 'saxi') # timer time_counter = m.Reg('time_counter', 32, initval=0) seq = Seq(m, 'seq', clk, rst) seq(time_counter.inc()) num_rep = functools.reduce(lambda x, y: x * y, c.shape[:-1], 1) def ctrl(): for i in range(100): pass ng.sim.set_global_addrs(_saxi, tmp_addr) start_time = time_counter.value ng.sim.start(_saxi) print('# start') ng.sim.wait(_saxi) end_time = time_counter.value print('# end') print('# execution cycles: %d' % (end_time - start_time)) # verify ok = True for i in range(num_rep): for j in range(c.shape[-1]): orig = memory.read_word(i * c.aligned_shape[-1] + j, c.addr, c_dtype.width) check = memory.read_word(i * c.aligned_shape[-1] + j, check_addr, c_dtype.width) if vthread.verilog.NotEql(orig, check): print('NG', i, j, orig, check) ok = False # else: # print('OK', i, j, orig, check) if ok: print('# verify: PASSED') else: print('# verify: FAILED') vthread.finish() th = vthread.Thread(m, 'th_ctrl', clk, rst, ctrl) fsm = th.start() uut = m.Instance(targ, 'uut', params=m.connect_params(targ), ports=m.connect_ports(targ)) # simulation.setup_waveform(m, uut) simulation.setup_clock(m, clk, hperiod=5) init = simulation.setup_reset(m, resetn, m.make_reset(), period=100, polarity='low') init.add( Delay(1000000), Systask('finish'), ) # output source code if filename is not None: m.to_verilog(filename) # run simulation sim = simulation.Simulator(m, sim=simtype) rslt = sim.run(outputfile=outputfile) lines = rslt.splitlines() if simtype == 'verilator' and lines[-1].startswith('-'): rslt = '\n'.join(lines[:-1]) return rslt
def run(a_shape=(15, 15), b_shape=(15, 15), a_dtype=ng.int32, b_dtype=ng.int32, c_dtype=ng.int32, par=1, axi_datawidth=32, silent=False, filename=None, simtype='iverilog', outputfile=None): # create target hardware a = ng.placeholder(a_dtype, shape=a_shape, name='a') b = ng.placeholder(b_dtype, shape=b_shape, name='b') t = ng.add(a, b, dtype=c_dtype, par=par) c = ng.relu(t, dtype=c_dtype, par=par) targ = ng.to_veriloggen([c], 'matrix_add_relu', silent=silent, config={'maxi_datawidth': axi_datawidth}) # verification data va = np.arange(a.length, dtype=np.int64).reshape(a.shape) % [5] - [10] vb = (np.arange(b.length, dtype=np.int64).reshape(b.shape) + [100]) % [6] - [10] eval_outs = ng.eval([c], a=va, b=vb) vc = eval_outs[0] # to memory image size_max = int( math.ceil( max(a.memory_size, b.memory_size, c.memory_size) / 4096)) * 4096 check_addr = max(a.addr, b.addr, c.addr) + size_max size_check = size_max tmp_addr = check_addr + size_check memimg_datawidth = 32 mem = np.zeros([1024 * 1024 * 8 // (memimg_datawidth // 8)], dtype=np.int64) mem = mem + [100] axi.set_memory(mem, va, memimg_datawidth, a_dtype.width, a.addr, max(int(math.ceil(axi_datawidth / a_dtype.width)), par)) axi.set_memory(mem, vb, memimg_datawidth, b_dtype.width, b.addr, max(int(math.ceil(axi_datawidth / b_dtype.width)), par)) axi.set_memory(mem, vc, memimg_datawidth, c_dtype.width, check_addr, max(int(math.ceil(axi_datawidth / c_dtype.width)), par)) # test controller m = Module('test') params = m.copy_params(targ) ports = m.copy_sim_ports(targ) clk = ports['CLK'] resetn = ports['RESETN'] rst = m.Wire('RST') rst.assign(Not(resetn)) # AXI memory model if outputfile is None: outputfile = os.path.splitext(os.path.basename(__file__))[0] + '.out' memimg_name = 'memimg_' + outputfile memory = axi.AxiMemoryModel(m, 'memory', clk, rst, datawidth=axi_datawidth, memimg=mem, memimg_name=memimg_name, memimg_datawidth=memimg_datawidth) memory.connect(ports, 'maxi') # AXI-Slave controller _saxi = vthread.AXIMLite(m, '_saxi', clk, rst, noio=True) _saxi.connect(ports, 'saxi') # timer time_counter = m.Reg('time_counter', 32, initval=0) seq = Seq(m, 'seq', clk, rst) seq(time_counter.inc()) num_rep = functools.reduce(lambda x, y: x * y, c.shape[:-1], 1) def ctrl(): for i in range(100): pass ng.sim.set_global_addrs(_saxi, tmp_addr) start_time = time_counter.value ng.sim.start(_saxi) print('# start') ng.sim.wait(_saxi) end_time = time_counter.value print('# end') print('# execution cycles: %d' % (end_time - start_time)) # verify ok = True for i in range(num_rep): for j in range(c.shape[-1]): orig = memory.read_word(i * c.aligned_shape[-1] + j, c.addr, c_dtype.width) check = memory.read_word(i * c.aligned_shape[-1] + j, check_addr, c_dtype.width) if vthread.verilog.NotEql(orig, check): print('NG', i, j, orig, check) ok = False # else: # print('OK', i, j, orig, check) if ok: print('# verify: PASSED') else: print('# verify: FAILED') vthread.finish() th = vthread.Thread(m, 'th_ctrl', clk, rst, ctrl) fsm = th.start() uut = m.Instance(targ, 'uut', params=m.connect_params(targ), ports=m.connect_ports(targ)) # simulation.setup_waveform(m, uut) simulation.setup_clock(m, clk, hperiod=5) init = simulation.setup_reset(m, resetn, m.make_reset(), period=100, polarity='low') init.add( Delay(1000000), Systask('finish'), ) # output source code if filename is not None: m.to_verilog(filename) # run simulation sim = simulation.Simulator(m, sim=simtype) rslt = sim.run(outputfile=outputfile) lines = rslt.splitlines() if simtype == 'verilator' and lines[-1].startswith('-'): rslt = '\n'.join(lines[:-1]) return rslt
def run(act_shape=(1, 4, 4, 3), weight0_shape=(9, 3, 3, 3), weight1_shape=(9, 36), act_dtype=ng.int32, weight_dtype=ng.int32, stride0=1, padding0=0, with_batchnorm0=False, with_batchnorm1=False, act_func0='ReLU', act_func1='relu', disable_fusion=False, par_ich=1, par_och=1, par_col=1, par_row=1, concur_och=None, stationary='filter', chunk_size=64, axi_datawidth=32, silent=False, filename=None, simtype='iverilog', outputfile=None): # pytorch model layers = [] layers.append( nn.Conv2d(weight0_shape[3], weight0_shape[0], weight0_shape[1], stride=stride0, padding=padding0)) if with_batchnorm0: layers.append(nn.BatchNorm2d(weight0_shape[0])) if act_func0 is not None: layers.append(getattr(nn, act_func0)()) class Transpose(nn.Module): def __init__(self, perm): super(Transpose, self).__init__() self.perm = perm def forward(self, input): return input.permute(*self.perm) layers.append(Transpose([0, 1, 3, 2])) class Flatten(nn.Module): def forward(self, input): # return input.view(input.size(0), -1) return torch.reshape(input, (input.size(0), -1)) layers.append(Flatten()) layers.append(nn.Linear(weight1_shape[1], weight1_shape[0])) if with_batchnorm1: layers.append(nn.BatchNorm2d(weight1_shape[0])) if act_func1 is not None: layers.append(getattr(nn, act_func1)()) model = nn.Sequential(*layers) # Pytorch to ONNX onnx_filename = 'onnx_matrix_conv2d_transpose_linear.onnx' dummy_input = torch.randn(*act_shape).transpose(1, 3) input_names = ['act'] output_names = ['out'] model.eval() torch.onnx.export(model, dummy_input, onnx_filename, input_names=input_names, output_names=output_names) # -------------------- # (1) Represent a DNN model as a dataflow by NNgen operators # -------------------- # ONNX to NNgen value_dtypes = { 'act': act_dtype, '0.weight': weight_dtype, '3.weight': weight_dtype, 'out': act_dtype } (outputs, placeholders, variables, constants, operators) = ng.from_onnx(onnx_filename, value_dtypes=value_dtypes, default_placeholder_dtype=act_dtype, default_variable_dtype=weight_dtype, default_constant_dtype=weight_dtype, default_operator_dtype=act_dtype, default_scale_dtype=ng.int32, default_bias_dtype=ng.int32, disable_fusion=disable_fusion) # -------------------- # (2) Assign quantized weights to the NNgen operators # -------------------- if act_dtype.width > 8: act_scale_factor = 128 else: act_scale_factor = int(round(2**(act_dtype.width - 1) * 0.5)) input_scale_factors = {'act': act_scale_factor} ng.quantize(outputs, input_scale_factors) # -------------------- # (3) Assign hardware attributes # -------------------- for op in operators.values(): if isinstance(op, ng.conv2d): op.attribute(par_ich=par_ich, par_och=par_och, par_row=par_row, par_col=par_col, concur_och=concur_och) # -------------------- # (4) Verify the DNN model behavior by executing the NNgen dataflow as a software # -------------------- act = placeholders['act'] out = outputs['out'] # verification data # random data std = 0.2 mean = 0.5 img = np.random.normal(size=act.length).astype(np.float32).reshape( act.shape) img = img * std + mean # execution on pytorch model_input = img if act.perm is not None: model_input = np.transpose(model_input, act.reversed_perm) model.eval() model_out = model(torch.from_numpy(model_input)).detach().numpy() if act.perm is not None and len(model_out.shape) == len(act.shape): model_out = np.transpose(model_out, act.perm) scaled_model_out = model_out * out.scale_factor # software-based verification vact = img * act_scale_factor vact = np.clip(vact, -1.0 * (2**(act.dtype.width - 1) - 1), 1.0 * (2**(act.dtype.width - 1) - 1)) vact = np.round(vact).astype(np.int64) eval_outs = ng.eval([out], act=vact) vout = eval_outs[0] mean_square_error = np.sum((vout - scaled_model_out)**2) / vout.size corrcoef = np.corrcoef(model_out.reshape([-1]), vout.reshape([-1])) # breakpoint() # -------------------- # (5) Convert the NNgen dataflow to a hardware description (Verilog HDL and IP-XACT) # -------------------- targ = ng.to_veriloggen([out], 'onnx_matrix_conv2d_transpose_linear', silent=silent, config={ 'maxi_datawidth': axi_datawidth, 'chunk_size': chunk_size }) # -------------------- # (6) Simulate the generated hardware by Veriloggen and Verilog simulator # -------------------- if simtype is None: sys.exit() # to memory image param_data = ng.export_ndarray([out], chunk_size) param_bytes = len(param_data) variable_addr = int(math.ceil( (act.addr + act.memory_size) / chunk_size)) * chunk_size check_addr = int(math.ceil( (variable_addr + param_bytes) / chunk_size)) * chunk_size tmp_addr = int(math.ceil( (check_addr + out.memory_size) / chunk_size)) * chunk_size memimg_datawidth = 32 mem = np.zeros([1024 * 1024 * 8 // (memimg_datawidth // 8)], dtype=np.int64) mem = mem + [100] # placeholder axi.set_memory( mem, vact, memimg_datawidth, act_dtype.width, act.addr, max(int(math.ceil(axi_datawidth / act_dtype.width)), par_ich)) # parameters (variable and constant) axi.set_memory(mem, param_data, memimg_datawidth, 8, variable_addr) # verification data axi.set_memory( mem, vout, memimg_datawidth, act_dtype.width, check_addr, max(int(math.ceil(axi_datawidth / act_dtype.width)), par_och)) # test controller m = Module('test') params = m.copy_params(targ) ports = m.copy_sim_ports(targ) clk = ports['CLK'] resetn = ports['RESETN'] rst = m.Wire('RST') rst.assign(Not(resetn)) # AXI memory model if outputfile is None: outputfile = os.path.splitext(os.path.basename(__file__))[0] + '.out' memimg_name = 'memimg_' + outputfile memory = axi.AxiMemoryModel(m, 'memory', clk, rst, datawidth=axi_datawidth, memimg=mem, memimg_name=memimg_name, memimg_datawidth=memimg_datawidth) memory.connect(ports, 'maxi') # AXI-Slave controller _saxi = vthread.AXIMLite(m, '_saxi', clk, rst, noio=True) _saxi.connect(ports, 'saxi') # timer time_counter = m.Reg('time_counter', 32, initval=0) seq = Seq(m, 'seq', clk, rst) seq(time_counter.inc()) def ctrl(): for i in range(100): pass ng.sim.set_global_addrs(_saxi, tmp_addr) start_time = time_counter.value ng.sim.start(_saxi) print('# start') ng.sim.wait(_saxi) end_time = time_counter.value print('# end') print('# execution cycles: %d' % (end_time - start_time)) # verify ok = True for i in range(out.shape[0]): for j in range(out.shape[1]): orig = memory.read_word(i * out.aligned_shape[1] + j, out.addr, act_dtype.width) check = memory.read_word(i * out.aligned_shape[1] + j, check_addr, act_dtype.width) if vthread.verilog.NotEql(orig, check): print('NG (', i, j, ') orig: ', orig, 'check: ', check) ok = False # else: # print('OK (', i, j, ') orig: ', orig, 'check: ', check) if ok: print('# verify: PASSED') else: print('# verify: FAILED') vthread.finish() th = vthread.Thread(m, 'th_ctrl', clk, rst, ctrl) fsm = th.start() uut = m.Instance(targ, 'uut', params=m.connect_params(targ), ports=m.connect_ports(targ)) # simulation.setup_waveform(m, uut) simulation.setup_clock(m, clk, hperiod=5) init = simulation.setup_reset(m, resetn, m.make_reset(), period=100, polarity='low') init.add( Delay(10000000), Systask('finish'), ) # output source code if filename is not None: m.to_verilog(filename) # run simulation sim = simulation.Simulator(m, sim=simtype) rslt = sim.run(outputfile=outputfile) lines = rslt.splitlines() if simtype == 'verilator' and lines[-1].startswith('-'): rslt = '\n'.join(lines[:-1]) return rslt
def run(act_shape=(1, 7, 7, 15), weight_shape=(7, 3, 3, 15), bias_shape=None, scale_shape=None, act_dtype=ng.int32, weight_dtype=ng.int32, bias_dtype=ng.int32, scale_dtype=ng.int32, out_dtype=ng.int32, conv2d_stride=(1, 1, 1, 1), rshift_mul=None, rshift_sum=None, rshift_out=None, act_func=None, par_ich=1, par_och=1, par_col=1, par_row=1, concur_och=None, stationary='filter', input_ram_size=None, filter_ram_size=None, bias_ram_size=None, scale_ram_size=None, out_ram_size=None, ksize=(1, 2, 2, 1), pool_stride=(1, 2, 2, 1), par=1, axi_datawidth=32, silent=False, filename=None, simtype='iverilog', outputfile=None): # create target hardware act = ng.placeholder(act_dtype, shape=act_shape, name='act') weight = ng.variable(weight_dtype, shape=weight_shape, name='weight') if bias_shape is not None: bias = ng.variable(bias_dtype, bias_shape, name='bias') else: bias = None if scale_shape is not None: scale = ng.variable(scale_dtype, scale_shape, name='scale') else: scale = None tmp = ng.conv2d(act, weight, conv2d_stride, bias, scale, rshift_mul, rshift_sum, rshift_out, act_func, 'SAME', out_dtype, ng.int32, ng.int32, 'conv2d', par_ich, par_och, par_col, par_row, concur_och, stationary, input_ram_size, filter_ram_size, bias_ram_size, scale_ram_size, None, None, None, out_ram_size) out = ng.avg_pool(tmp, ksize=ksize, strides=pool_stride, sum_dtype=ng.int32, dtype=out_dtype, par=par) targ = ng.to_veriloggen([out], 'matrix_conv2d_avg_pool', silent=silent, config={'maxi_datawidth': axi_datawidth}) # verification data vact = np.arange(act.length, dtype=np.int64).reshape(act.shape) % [16] vweight = np.arange(weight.length, dtype=np.int64).reshape(weight.shape) % [32] - [16] if bias is not None: vbias = np.arange(bias.length, dtype=np.int64).reshape(bias.shape) % [4] else: vbias = None if scale is not None: vscale = np.arange(scale.length, dtype=np.int64).reshape(scale.shape) % [6] else: vscale = None eval_outs = ng.eval([out], act=vact, weight=vweight, bias=vbias, scale=vscale) vout = eval_outs[0] # to memory image size_max = int(math.ceil(max(act.memory_size, weight.memory_size, bias.memory_size if bias is not None else 0, scale.memory_size if scale is not None else 0, out.memory_size) / 4096)) * 4096 check_addr = max(act.addr, weight.addr, bias.addr if bias is not None else -1, scale.addr if scale is not None else -1, out.addr) + size_max size_check = size_max tmp_addr = check_addr + size_check memimg_datawidth = 32 mem = np.zeros([1024 * 1024 * 8 // (memimg_datawidth // 8)], dtype=np.int64) mem = mem + [100] axi.set_memory(mem, vact, memimg_datawidth, act_dtype.width, act.addr, max(int(math.ceil(axi_datawidth / act_dtype.width)), par_ich)) axi.set_memory(mem, vweight, memimg_datawidth, weight_dtype.width, weight.addr, max(int(math.ceil(axi_datawidth / weight_dtype.width)), par_ich)) if bias is not None: axi.set_memory(mem, vbias, memimg_datawidth, bias_dtype.width, bias.addr, max(int(math.ceil(axi_datawidth / bias_dtype.width)), par_och)) if scale is not None: axi.set_memory(mem, vscale, memimg_datawidth, scale_dtype.width, scale.addr, max(int(math.ceil(axi_datawidth / scale_dtype.width)), par_och)) axi.set_memory(mem, vout, memimg_datawidth, out_dtype.width, check_addr, max(int(math.ceil(axi_datawidth / out_dtype.width)), par)) # test controller m = Module('test') params = m.copy_params(targ) ports = m.copy_sim_ports(targ) clk = ports['CLK'] resetn = ports['RESETN'] rst = m.Wire('RST') rst.assign(Not(resetn)) # AXI memory model if outputfile is None: outputfile = os.path.splitext(os.path.basename(__file__))[0] + '.out' memimg_name = 'memimg_' + outputfile memory = axi.AxiMemoryModel(m, 'memory', clk, rst, datawidth=axi_datawidth, memimg=mem, memimg_name=memimg_name, memimg_datawidth=memimg_datawidth) memory.connect(ports, 'maxi') # AXI-Slave controller _saxi = vthread.AXIMLite(m, '_saxi', clk, rst, noio=True) _saxi.connect(ports, 'saxi') # timer time_counter = m.Reg('time_counter', 32, initval=0) seq = Seq(m, 'seq', clk, rst) seq( time_counter.inc() ) def ctrl(): for i in range(100): pass ng.sim.set_global_addrs(_saxi, tmp_addr) start_time = time_counter.value ng.sim.start(_saxi) print('# start') ng.sim.wait(_saxi) end_time = time_counter.value print('# end') print('# execution cycles: %d' % (end_time - start_time)) # verify ok = True for bat in range(out.shape[0]): for y in range(out.shape[1]): for x in range(out.shape[2]): for ch in range(out.shape[3]): orig = memory.read_word(bat * out.aligned_shape[1] * out.aligned_shape[2] * out.aligned_shape[3] + y * out.aligned_shape[2] * out.aligned_shape[3] + x * out.aligned_shape[3] + ch, out.addr, out_dtype.width) check = memory.read_word(bat * out.aligned_shape[1] * out.aligned_shape[2] * out.aligned_shape[3] + y * out.aligned_shape[2] * out.aligned_shape[3] + x * out.aligned_shape[3] + ch, check_addr, out_dtype.width) if vthread.verilog.NotEql(orig, check): print('NG (', bat, y, x, ch, ') orig: ', orig, ' check: ', check) ok = False # else: # print('OK (', bat, y, x, ch, # ') orig: ', orig, ' check: ', check) if ok: print('# verify: PASSED') else: print('# verify: FAILED') vthread.finish() th = vthread.Thread(m, 'th_ctrl', clk, rst, ctrl) fsm = th.start() uut = m.Instance(targ, 'uut', params=m.connect_params(targ), ports=m.connect_ports(targ)) # simulation.setup_waveform(m, uut) simulation.setup_clock(m, clk, hperiod=5) init = simulation.setup_reset(m, resetn, m.make_reset(), period=100, polarity='low') init.add( Delay(10000000), Systask('finish'), ) # output source code if filename is not None: m.to_verilog(filename) # run simulation sim = simulation.Simulator(m, sim=simtype) rslt = sim.run(outputfile=outputfile) lines = rslt.splitlines() if simtype == 'verilator' and lines[-1].startswith('-'): rslt = '\n'.join(lines[:-1]) return rslt
def run(act_shape=(1, 7, 7, 3), act_dtype=ng.int32, ksize=2, stride=2, padding=0, par=1, chunk_size=64, axi_datawidth=32, silent=False, filename=None, simtype='iverilog', outputfile=None): # pytorch model layers = [] layers.append(nn.AvgPool2d(ksize, stride=stride, padding=padding)) model = nn.Sequential(*layers) # Pytorch to ONNX onnx_filename = 'onnx_matrix_avg_pool.onnx' dummy_input = torch.randn(*act_shape).transpose(1, 3) input_names = ['act'] output_names = ['out'] torch.onnx.export(model, dummy_input, onnx_filename, input_names=input_names, output_names=output_names) # -------------------- # (1) Represent a DNN model as a dataflow by NNgen operators # -------------------- # ONNX to NNgen value_dtypes = {'act': act_dtype, 'out': act_dtype} (outputs, placeholders, variables, constants, operators) = ng.from_onnx(onnx_filename, value_dtypes=value_dtypes, default_placeholder_dtype=act_dtype, default_variable_dtype=ng.int32, default_constant_dtype=ng.int32, default_operator_dtype=act_dtype, default_scale_dtype=ng.int32, default_bias_dtype=ng.int32, disable_fusion=False) # -------------------- # (2) Assign quantized weights to the NNgen operators # -------------------- input_scale_factors = {'act': 1.0} ng.quantize(outputs, input_scale_factors) # -------------------- # (3) Assign hardware attributes # -------------------- for op in operators.values(): if isinstance(op, ng.avg_pool): op.attribute(par=par) # -------------------- # (4) Verify the DNN model behavior by executing the NNgen dataflow as a software # -------------------- act = placeholders['act'] out = outputs['out'] # verification data if act_dtype.width > 4: vact = np.arange(act.length, dtype=np.int64).reshape(act.shape) % [11] + [1] else: vact = np.arange(act.length, dtype=np.int64).reshape(act.shape) % [5] + [1] eval_outs = ng.eval([out], act=vact) vout = eval_outs[0] # software-based verification model_input = vact.astype(np.float32) if act.perm is not None: model_input = np.transpose(model_input, act.reversed_perm) model.eval() model_out = model(torch.from_numpy(model_input)).detach().numpy() if act.perm is not None: model_out = np.transpose(model_out, act.perm) scaled_model_out = model_out * out.scale_factor mean_square_error = np.sum((vout - scaled_model_out) ** 2) / vout.size corrcoef = np.corrcoef(model_out.reshape([-1]), vout.reshape([-1])) # breakpoint() # -------------------- # (5) Convert the NNgen dataflow to a hardware description (Verilog HDL and IP-XACT) # -------------------- targ = ng.to_veriloggen([out], 'onnx_matrix_avg_pool', silent=silent, config={'maxi_datawidth': axi_datawidth, 'chunk_size': chunk_size}) # -------------------- # (6) Simulate the generated hardware by Veriloggen and Verilog simulator # -------------------- if simtype is None: sys.exit() # to memory image param_data = ng.export_ndarray([out]) param_bytes = len(param_data) variable_addr = int(math.ceil((act.addr + act.memory_size) / chunk_size)) * chunk_size check_addr = int(math.ceil((variable_addr + param_bytes) / chunk_size)) * chunk_size tmp_addr = int(math.ceil((check_addr + out.memory_size) / chunk_size)) * chunk_size memimg_datawidth = 32 mem = np.zeros([1024 * 1024 * 8 // (memimg_datawidth // 8)], dtype=np.int64) mem = mem + [100] # placeholder axi.set_memory(mem, vact, memimg_datawidth, act_dtype.width, act.addr, max(int(math.ceil(axi_datawidth / act_dtype.width)), par)) # parameters (variable and constant) axi.set_memory(mem, param_data, memimg_datawidth, 8, variable_addr) # verification data axi.set_memory(mem, vout, memimg_datawidth, act_dtype.width, check_addr, max(int(math.ceil(axi_datawidth / act_dtype.width)), par)) # test controller m = Module('test') params = m.copy_params(targ) ports = m.copy_sim_ports(targ) clk = ports['CLK'] resetn = ports['RESETN'] rst = m.Wire('RST') rst.assign(Not(resetn)) # AXI memory model if outputfile is None: outputfile = os.path.splitext(os.path.basename(__file__))[0] + '.out' memimg_name = 'memimg_' + outputfile memory = axi.AxiMemoryModel(m, 'memory', clk, rst, datawidth=axi_datawidth, memimg=mem, memimg_name=memimg_name, memimg_datawidth=memimg_datawidth) memory.connect(ports, 'maxi') # AXI-Slave controller _saxi = vthread.AXIMLite(m, '_saxi', clk, rst, noio=True) _saxi.connect(ports, 'saxi') # timer time_counter = m.Reg('time_counter', 32, initval=0) seq = Seq(m, 'seq', clk, rst) seq( time_counter.inc() ) def ctrl(): for i in range(100): pass ng.sim.set_global_addrs(_saxi, tmp_addr) start_time = time_counter.value ng.sim.start(_saxi) print('# start') ng.sim.wait(_saxi) end_time = time_counter.value print('# end') print('# execution cycles: %d' % (end_time - start_time)) # verify ok = True for bat in range(out.shape[0]): for y in range(out.shape[1]): for x in range(out.shape[2]): for ch in range(out.shape[3]): orig = memory.read_word( bat * out.aligned_shape[1] * out.aligned_shape[2] * out.aligned_shape[3] + y * out.aligned_shape[2] * out.aligned_shape[3] + x * out.aligned_shape[3] + ch, out.addr, act_dtype.width) check = memory.read_word( bat * out.aligned_shape[1] * out.aligned_shape[2] * out.aligned_shape[3] + y * out.aligned_shape[2] * out.aligned_shape[3] + x * out.aligned_shape[3] + ch, check_addr, act_dtype.width) if vthread.verilog.NotEql(orig, check): print('NG (', bat, y, x, ch, ') orig: ', orig, ' check: ', check) ok = False # else: # print('OK (', bat, y, x, ch, # ') orig: ', orig, ' check: ', check) if ok: print('# verify: PASSED') else: print('# verify: FAILED') vthread.finish() th = vthread.Thread(m, 'th_ctrl', clk, rst, ctrl) fsm = th.start() uut = m.Instance(targ, 'uut', params=m.connect_params(targ), ports=m.connect_ports(targ)) # simulation.setup_waveform(m, uut) simulation.setup_clock(m, clk, hperiod=5) init = simulation.setup_reset(m, resetn, m.make_reset(), period=100, polarity='low') init.add( Delay(10000000), Systask('finish'), ) # output source code if filename is not None: m.to_verilog(filename) # run simulation sim = simulation.Simulator(m, sim=simtype) rslt = sim.run(outputfile=outputfile) lines = rslt.splitlines() if simtype == 'verilator' and lines[-1].startswith('-'): rslt = '\n'.join(lines[:-1]) return rslt
def run(act_shape=(1, 7, 7, 15), weight1_shape=(7, 3, 3, 15), bias1_shape=None, scale1_shape=None, weight2_shape=(9, 3, 3, 7), bias2_shape=None, scale2_shape=None, act_dtype=ng.int32, weight1_dtype=ng.int32, bias1_dtype=ng.int32, scale1_dtype=ng.int32, weight2_dtype=ng.int32, bias2_dtype=ng.int32, scale2_dtype=ng.int32, tmp_dtype=ng.int32, out_dtype=ng.int32, stride1=(1, 1, 1, 1), stride2=(1, 1, 1, 1), rshift_mul1=None, rshift_sum1=None, rshift_out1=None, rshift_mul2=None, rshift_sum2=None, rshift_out2=None, act_func1=None, act_func2=None, par_ich1=1, par_och1=1, par_col1=1, par_row1=1, concur_och1=None, stationary1='filter', par_ich2=1, par_och2=1, par_col2=1, par_row2=1, concur_och2=None, stationary2='filter', input_ram_size1=None, filter_ram_size1=None, bias_ram_size1=None, scale_ram_size1=None, out_ram_size1=None, input_ram_size2=None, filter_ram_size2=None, bias_ram_size2=None, scale_ram_size2=None, out_ram_size2=None, chunk_size=64, axi_datawidth=32, silent=False, filename=None, simtype='iverilog', outputfile=None): # create target hardware act = ng.placeholder(act_dtype, shape=act_shape, name='act') weight1 = ng.variable(weight1_dtype, shape=weight1_shape, name='weight1') if bias1_shape is not None: bias1 = ng.variable(bias1_dtype, bias1_shape, name='bias1') else: bias1 = None if scale1_shape is not None: scale1 = ng.variable(scale1_dtype, scale1_shape, name='scale1') else: scale1 = None weight2 = ng.variable(weight2_dtype, shape=weight2_shape, name='weight2') if bias2_shape is not None: bias2 = ng.variable(bias2_dtype, bias2_shape, name='bias2') else: bias2 = None if scale2_shape is not None: scale2 = ng.variable(scale2_dtype, scale2_shape, name='scale2') else: scale2 = None tmp = ng.conv2d(act, weight1, stride1, bias1, scale1, rshift_mul1, rshift_sum1, rshift_out1, act_func1, 'SAME', tmp_dtype, ng.int32, ng.int32, 'conv2d_1', par_ich1, par_och1, par_col1, par_row1, concur_och1, stationary1, input_ram_size1, filter_ram_size1, bias_ram_size1, scale_ram_size1, None, None, None, out_ram_size1) out = ng.conv2d(tmp, weight2, stride2, bias2, scale2, rshift_mul2, rshift_sum2, rshift_out2, act_func2, 'SAME', out_dtype, ng.int32, ng.int32, 'conv2d_2', par_ich2, par_och2, par_col2, par_row2, concur_och2, stationary2, input_ram_size2, filter_ram_size2, bias_ram_size2, scale_ram_size2, None, None, None, out_ram_size2) targ = ng.to_veriloggen([out], 'matrix_conv2d_conv2d_variable', silent=silent, config={'maxi_datawidth': axi_datawidth, 'offchipram_chunk_bytes': chunk_size}) # verification data vact = np.arange(act.length, dtype=np.int64).reshape(act.shape) % [16] vweight1 = np.arange(weight1.length, dtype=np.int64).reshape(weight1_shape) % [32] - [16] if bias1 is not None: vbias1 = np.arange(bias1.length, dtype=np.int64).reshape(bias1.shape) % [16] else: vbias1 = None if scale1 is not None: vscale1 = np.arange(scale1.length, dtype=np.int64).reshape(scale1.shape) % [8] else: vscale1 = None vweight2 = np.arange(weight2.length, dtype=np.int64).reshape(weight2_shape) % [32] - [16] if bias2 is not None: vbias2 = np.arange(bias2.length, dtype=np.int64).reshape(bias2.shape) % [16] else: vbias2 = None if scale2 is not None: vscale2 = np.arange(scale2.length, dtype=np.int64).reshape(scale2.shape) % [8] else: vscale2 = None vtmp = ng.verify.conv2d(vact, vweight1, stride1, vbias1, vscale1, rshift_mul1, rshift_sum1, rshift_out1, act_func1, 'SAME', tmp_dtype, ng.int32, ng.int32, 'conv2d_1', par_ich1, par_och1, par_col1, par_row1, concur_och1, stationary1, input_ram_size1, filter_ram_size1, bias_ram_size1, scale_ram_size1, None, None, None, out_ram_size1, False, act_dtype, weight1_dtype) vout = ng.verify.conv2d(vtmp, vweight2, stride2, vbias2, vscale2, rshift_mul2, rshift_sum2, rshift_out2, act_func2, 'SAME', out_dtype, ng.int32, ng.int32, 'conv2d_2', par_ich2, par_och2, par_col2, par_row2, concur_och2, stationary2, input_ram_size2, filter_ram_size2, bias_ram_size2, scale_ram_size2, None, None, None, out_ram_size2, False, tmp_dtype, weight2_dtype) # to memory image size_max = int(math.ceil(max(act.memory_size, weight1.memory_size, bias1.memory_size if bias1 is not None else 0, scale1.memory_size if scale1 is not None else 0, weight2.memory_size, bias2.memory_size if bias2 is not None else 0, scale2.memory_size if scale2 is not None else 0, out.memory_size) / chunk_size)) * chunk_size # assign custom addresses variable_addr = max(act.addr, out.addr) + size_max weight1_addr = variable_addr bias1_addr = weight1_addr + int(math.ceil(weight1.memory_size / chunk_size)) * chunk_size scale1_addr = (bias1_addr + int(math.ceil(bias1.memory_size / chunk_size)) * chunk_size if bias1 is not None else weight1_addr) weight2_addr = (scale1_addr + int(math.ceil(scale1.memory_size / chunk_size)) * chunk_size if scale1 is not None else bias1_addr) bias2_addr = weight2_addr + int(math.ceil(weight2.memory_size / chunk_size)) * chunk_size scale2_addr = (bias2_addr + int(math.ceil(bias2.memory_size / chunk_size)) * chunk_size if bias2 is not None else weight2_addr) check_addr = scale2_addr + size_max size_check = size_max tmp_addr = check_addr + size_check memimg_datawidth = 32 mem = np.zeros([1024 * 1024 * 8 // memimg_datawidth], dtype=np.int64) mem = mem + [100] axi.set_memory(mem, vact, memimg_datawidth, act_dtype.width, act.addr, max(int(math.ceil(axi_datawidth / act_dtype.width)), par_ich1)) axi.set_memory(mem, vweight1, memimg_datawidth, weight1_dtype.width, weight1_addr, max(int(math.ceil(axi_datawidth / weight1_dtype.width)), par_ich1)) if bias1_shape is not None: axi.set_memory(mem, vbias1, memimg_datawidth, bias1_dtype.width, bias1_addr, max(int(math.ceil(axi_datawidth / bias1_dtype.width)), par_och1)) if scale1_shape is not None: axi.set_memory(mem, vscale1, memimg_datawidth, scale1_dtype.width, scale1_addr, max(int(math.ceil(axi_datawidth / scale1_dtype.width)), par_och1)) axi.set_memory(mem, vweight2, memimg_datawidth, weight2_dtype.width, weight2_addr, max(int(math.ceil(axi_datawidth / weight2_dtype.width)), par_ich2)) if bias2_shape is not None: axi.set_memory(mem, vbias2, memimg_datawidth, bias2_dtype.width, bias2_addr, max(int(math.ceil(axi_datawidth / bias2_dtype.width)), par_och2)) if scale2_shape is not None: axi.set_memory(mem, vscale2, memimg_datawidth, scale2_dtype.width, scale2_addr, max(int(math.ceil(axi_datawidth / scale2_dtype.width)), par_och2)) axi.set_memory(mem, vout, memimg_datawidth, out_dtype.width, check_addr, max(int(math.ceil(axi_datawidth / out_dtype.width)), par_och2)) # test controller m = Module('test') params = m.copy_params(targ) ports = m.copy_sim_ports(targ) clk = ports['CLK'] resetn = ports['RESETN'] rst = m.Wire('RST') rst.assign(Not(resetn)) # AXI memory model if outputfile is None: outputfile = os.path.splitext(os.path.basename(__file__))[0] + '.out' memimg_name = 'memimg_' + outputfile memory = axi.AxiMemoryModel(m, 'memory', clk, rst, datawidth=axi_datawidth, memimg=mem, memimg_name=memimg_name, memimg_datawidth=memimg_datawidth) memory.connect(ports, 'maxi') # AXI-Slave controller _saxi = vthread.AXIMLite(m, '_saxi', clk, rst, noio=True) _saxi.connect(ports, 'saxi') # timer time_counter = m.Reg('time_counter', 32, initval=0) seq = Seq(m, 'seq', clk, rst) seq( time_counter.inc() ) def ctrl(): for i in range(100): pass # set custom addresses ng.sim.set_global_addrs(_saxi, tmp_addr, out.addr, act.addr, variable_addr) start_time = time_counter.value ng.sim.start(_saxi) print('# start') ng.sim.wait(_saxi) end_time = time_counter.value print('# end') print('# execution cycles: %d' % (end_time - start_time)) # verify ok = True for bat in range(out.shape[0]): for y in range(out.shape[1]): for x in range(out.shape[2]): for ch in range(out.shape[3]): orig = memory.read_word( bat * out.aligned_shape[1] * out.aligned_shape[2] * out.aligned_shape[3] + y * out.aligned_shape[2] * out.aligned_shape[3] + x * out.aligned_shape[3] + ch, out.addr, out_dtype.width) check = memory.read_word( bat * out.aligned_shape[1] * out.aligned_shape[2] * out.aligned_shape[3] + y * out.aligned_shape[2] * out.aligned_shape[3] + x * out.aligned_shape[3] + ch, check_addr, out_dtype.width) if vthread.verilog.NotEql(orig, check): print('NG (', bat, y, x, ch, ') orig: ', orig, ' check: ', check) ok = False # else: # print('OK (', bat, y, x, ch, # ') orig: ', orig, ' check: ', check) if ok: print('# verify: PASSED') else: print('# verify: FAILED') vthread.finish() th = vthread.Thread(m, 'th_ctrl', clk, rst, ctrl) fsm = th.start() uut = m.Instance(targ, 'uut', params=m.connect_params(targ), ports=m.connect_ports(targ)) # simulation.setup_waveform(m, uut) simulation.setup_clock(m, clk, hperiod=5) init = simulation.setup_reset(m, resetn, m.make_reset(), period=100, polarity='low') init.add( Delay(10000000), Systask('finish'), ) # output source code if filename is not None: m.to_verilog(filename) # run simulation sim = simulation.Simulator(m, sim=simtype) rslt = sim.run(outputfile=outputfile) lines = rslt.splitlines() if simtype == 'verilator' and lines[-1].startswith('-'): rslt = '\n'.join(lines[:-1]) return rslt
def run(a_shape=(7, 15), b_shape=(7, 15), a_dtype=ng.int32, b_dtype=ng.int32, c_dtype=ng.int32, par=1, axi_datawidth=32, silent=False, filename=None, simtype='iverilog', outputfile=None): # model definition model = MatrixAdd() # Pytorch to ONNX onnx_filename = 'onnx_matrix_add.onnx' dummy_a = torch.randn(*a_shape) dummy_b = torch.randn(*b_shape) dummy_inputs = (dummy_a, dummy_b) input_names = ['a', 'b'] output_names = ['c'] model.eval() torch.onnx.export(model, dummy_inputs, onnx_filename, input_names=input_names, output_names=output_names) # ONNX to NNgen value_dtypes = {'a': a_dtype, 'b': b_dtype, 'c': c_dtype} (outputs, placeholders, variables, constants, operators) = ng.from_onnx(onnx_filename, value_dtypes=value_dtypes, default_placeholder_dtype=ng.int32, default_variable_dtype=ng.int32, default_constant_dtype=ng.int32, default_operator_dtype=ng.int32, default_scale_dtype=ng.int32, default_bias_dtype=ng.int32, disable_fusion=False) # set attribute for op in operators.values(): if isinstance(op, ng.add): op.attribute(par=par) # create target hardware a = placeholders['a'] b = placeholders['b'] c = outputs['c'] targ = ng.to_veriloggen([c], 'onnx_matrix_add', silent=silent, config={'maxi_datawidth': axi_datawidth}) # verification data va = np.arange(a.length, dtype=np.int64).reshape(a.shape) % [5] vb = (np.arange(b.length, dtype=np.int64).reshape(b.shape) + [100]) % [6] eval_outs = ng.eval([c], a=va, b=vb) vc = eval_outs[0] # exec on pytorch model_a = va.astype(np.float32) model_b = vb.astype(np.float32) if a.perm is not None: model_a = np.transpose(model_a, a.reversed_perm) if b.perm is not None: model_b = np.transpose(model_b, b.reversed_perm) model.eval() model_c = model(torch.from_numpy(model_a), torch.from_numpy(model_b)).detach().numpy() if a.perm is not None: model_c = np.transpose(model_c, a.perm) scaled_model_c = model_c * c.scale_factor c_diff = vc - scaled_model_c c_err = c_diff / (scaled_model_c + 0.00000001) max_c_err = np.max(np.abs(c_err)) # if max_c_err > 0.1: # raise ValueError("too large output error: %f > 0.1" % max_c_err) # to memory image param_data = ng.export_ndarray([c]) param_bytes = len(param_data) variable_addr = int( math.ceil( max(a.addr + a.memory_size, b.addr + b.memory_size) / 4096)) * 4096 check_addr = int(math.ceil((variable_addr + param_bytes) / 4096)) * 4096 tmp_addr = int(math.ceil((check_addr + c.memory_size) / 4096)) * 4096 memimg_datawidth = 32 mem = np.zeros([1024 * 1024 * 8 // (memimg_datawidth // 8)], dtype=np.int64) mem = mem + [100] # placeholder axi.set_memory(mem, va, memimg_datawidth, a_dtype.width, a.addr, max(int(math.ceil(axi_datawidth / a_dtype.width)), par)) axi.set_memory(mem, vb, memimg_datawidth, b_dtype.width, b.addr, max(int(math.ceil(axi_datawidth / b_dtype.width)), par)) # parameters (variable and constant) axi.set_memory(mem, param_data, memimg_datawidth, 8, variable_addr) # verification data axi.set_memory(mem, vc, memimg_datawidth, c_dtype.width, check_addr, max(int(math.ceil(axi_datawidth / c_dtype.width)), par)) # test controller m = Module('test') params = m.copy_params(targ) ports = m.copy_sim_ports(targ) clk = ports['CLK'] resetn = ports['RESETN'] rst = m.Wire('RST') rst.assign(Not(resetn)) # AXI memory model if outputfile is None: outputfile = os.path.splitext(os.path.basename(__file__))[0] + '.out' memimg_name = 'memimg_' + outputfile memory = axi.AxiMemoryModel(m, 'memory', clk, rst, datawidth=axi_datawidth, memimg=mem, memimg_name=memimg_name, memimg_datawidth=memimg_datawidth) memory.connect(ports, 'maxi') # AXI-Slave controller _saxi = vthread.AXIMLite(m, '_saxi', clk, rst, noio=True) _saxi.connect(ports, 'saxi') # timer time_counter = m.Reg('time_counter', 32, initval=0) seq = Seq(m, 'seq', clk, rst) seq(time_counter.inc()) num_rep = functools.reduce(lambda x, y: x * y, c.shape[:-1], 1) def ctrl(): for i in range(100): pass ng.sim.set_global_addrs(_saxi, tmp_addr) start_time = time_counter.value ng.sim.start(_saxi) print('# start') ng.sim.wait(_saxi) end_time = time_counter.value print('# end') print('# execution cycles: %d' % (end_time - start_time)) # verify ok = True for i in range(num_rep): for j in range(c.shape[-1]): orig = memory.read_word(i * c.aligned_shape[-1] + j, c.addr, c_dtype.width) check = memory.read_word(i * c.aligned_shape[-1] + j, check_addr, c_dtype.width) if vthread.verilog.NotEql(orig, check): print('NG', i, j, orig, check) ok = False # else: # print('OK', i, j, orig, check) if ok: print('# verify: PASSED') else: print('# verify: FAILED') vthread.finish() th = vthread.Thread(m, 'th_ctrl', clk, rst, ctrl) fsm = th.start() uut = m.Instance(targ, 'uut', params=m.connect_params(targ), ports=m.connect_ports(targ)) # simulation.setup_waveform(m, uut) simulation.setup_clock(m, clk, hperiod=5) init = simulation.setup_reset(m, resetn, m.make_reset(), period=100, polarity='low') init.add( Delay(1000000), Systask('finish'), ) # output source code if filename is not None: m.to_verilog(filename) # run simulation sim = simulation.Simulator(m, sim=simtype) rslt = sim.run(outputfile=outputfile) lines = rslt.splitlines() if simtype == 'verilator' and lines[-1].startswith('-'): rslt = '\n'.join(lines[:-1]) return rslt
def run(act_shape=(1, 7, 7, 3), weight0_shape=(9, 3, 3, 3), weight1_shape=(9, 3, 3, 9), act_dtype=ng.int32, weight_dtype=ng.int32, out_dtype=ng.int32, stride0=1, stride1=1, padding0=0, padding1=0, with_batchnorm0=False, with_batchnorm1=False, act_func0='relu', act_func1='relu', disable_fusion=False, par_ich=1, par_och=1, par_col=1, par_row=1, concur_och=None, stationary='filter', chunk_size=64, axi_datawidth=32, silent=False, filename=None, simtype='iverilog', outputfile=None): # model definition layers = [] layers.append( nn.Conv2d(weight0_shape[3], weight0_shape[0], weight0_shape[1], stride=stride0, padding=padding0)) if with_batchnorm0: layers.append(nn.BatchNorm2d(weight0_shape[0])) if act_func0 == 'relu': layers.append(nn.ReLU(inplace=True)) elif act_func0 == 'leaky_relu': layers.append(nn.LeakyReLU(inplace=True)) layers.append( nn.Conv2d(weight1_shape[3], weight1_shape[0], weight1_shape[1], stride=stride1, padding=padding1)) if with_batchnorm1: layers.append(nn.BatchNorm2d(weight1_shape[0])) if act_func1 == 'relu': layers.append(nn.ReLU(inplace=True)) elif act_func1 == 'leaky_relu': layers.append(nn.LeakyReLU(inplace=True)) model = nn.Sequential(*layers) # Pytorch to ONNX onnx_filename = 'onnx_matrix_conv2d_conv2d.onnx' dummy_input = torch.randn(*act_shape).transpose(1, 3) input_names = ['act'] output_names = ['out'] model.eval() torch.onnx.export(model, dummy_input, onnx_filename, input_names=input_names, output_names=output_names) # ONNX to NNgen value_dtypes = { 'act': act_dtype, '0.weight': weight_dtype, '1.weight': weight_dtype, 'out': act_dtype } (outputs, placeholders, variables, constants, operators) = ng.from_onnx(onnx_filename, value_dtypes=value_dtypes, default_placeholder_dtype=act_dtype, default_variable_dtype=weight_dtype, default_constant_dtype=weight_dtype, default_operator_dtype=out_dtype, default_scale_dtype=ng.int32, default_bias_dtype=ng.int32, disable_fusion=disable_fusion) # default linear quantization if act_dtype.width >= 8: value_ranges = {'act': (-120, 120)} else: value_ranges = { 'act': (-(2**(act_dtype.width - 1)), (2**(act_dtype.width - 1))) } ng.quantize(outputs, value_ranges=value_ranges) # set attribute for op in operators.values(): if isinstance(op, ng.conv2d): op.attribute(par_ich=par_ich, par_och=par_och, par_row=par_row, par_col=par_col, concur_och=concur_och) # create target hardware act = placeholders['act'] out = outputs['out'] targ = ng.to_veriloggen([out], 'onnx_matrix_conv2d_conv2d', silent=silent, config={ 'maxi_datawidth': axi_datawidth, 'chunk_size': chunk_size }) # verification data # if act_dtype.width > 4: # vact = np.arange(act.length, dtype=np.int64).reshape(act.shape) % [11] + [1] # else: # vact = np.arange(act.length, dtype=np.int64).reshape(act.shape) % [5] + [1] #vact = np.ones(act.shape) vact = np.random.normal(size=act.length).reshape(act.shape) vact = np.clip(vact, -3.0, 3.0) vact_min_val, vact_max_val = value_ranges['act'] vact_max_abs_range = max(abs(vact_min_val), abs(vact_max_val)) vact_width = vact_max_abs_range.bit_length() + 1 vact = vact * (1.0 * (2**(vact_width - 1) - 1)) / 3.0 vact = np.round(vact).astype(np.int64) eval_outs = ng.eval([out], act=vact) vout = eval_outs[0] # exec on pytorch model_input = vact.astype(np.float32) if act.perm is not None: model_input = np.transpose(model_input, act.reversed_perm) model.eval() model_out = model(torch.from_numpy(model_input)).detach().numpy() if act.perm is not None: model_out = np.transpose(model_out, act.perm) scaled_model_out = model_out * out.scale_factor out_diff = vout - scaled_model_out out_err = out_diff / (scaled_model_out + 0.00000001) max_out_err = np.max(np.abs(out_err)) # if max_out_err > 0.1: # raise ValueError("too large output error: %f > 0.1" % max_out_err) # to memory image param_data = ng.make_param_array(variables, constants, chunk_size) param_bytes = len(param_data) variable_addr = int(math.ceil( (act.addr + act.memory_size) / chunk_size)) * chunk_size check_addr = int(math.ceil( (variable_addr + param_bytes) / chunk_size)) * chunk_size tmp_addr = int(math.ceil( (check_addr + out.memory_size) / chunk_size)) * chunk_size memimg_datawidth = 32 mem = np.zeros([1024 * 1024 * 8 // memimg_datawidth], dtype=np.int64) mem = mem + [100] # placeholder axi.set_memory( mem, vact, memimg_datawidth, act_dtype.width, act.addr, max(int(math.ceil(axi_datawidth / act_dtype.width)), par_ich)) # parameters (variable and constant) axi.set_memory(mem, param_data, memimg_datawidth, 8, variable_addr) # verification data axi.set_memory( mem, vout, memimg_datawidth, out_dtype.width, check_addr, max(int(math.ceil(axi_datawidth / out_dtype.width)), par_och)) # test controller m = Module('test') params = m.copy_params(targ) ports = m.copy_sim_ports(targ) clk = ports['CLK'] resetn = ports['RESETN'] rst = m.Wire('RST') rst.assign(Not(resetn)) # AXI memory model if outputfile is None: outputfile = os.path.splitext(os.path.basename(__file__))[0] + '.out' memimg_name = 'memimg_' + outputfile memory = axi.AxiMemoryModel(m, 'memory', clk, rst, datawidth=axi_datawidth, memimg=mem, memimg_name=memimg_name, memimg_datawidth=memimg_datawidth) memory.connect(ports, 'maxi') # AXI-Slave controller _saxi = vthread.AXIMLite(m, '_saxi', clk, rst, noio=True) _saxi.connect(ports, 'saxi') # timer time_counter = m.Reg('time_counter', 32, initval=0) seq = Seq(m, 'seq', clk, rst) seq(time_counter.inc()) def ctrl(): for i in range(100): pass ng.sim.set_global_addrs(_saxi, tmp_addr) start_time = time_counter.value ng.sim.start(_saxi) print('# start') ng.sim.wait(_saxi) end_time = time_counter.value print('# end') print('# execution cycles: %d' % (end_time - start_time)) # verify ok = True for bat in range(out.shape[0]): for y in range(out.shape[1]): for x in range(out.shape[2]): for ch in range(out.shape[3]): orig = memory.read_word( bat * out.aligned_shape[1] * out.aligned_shape[2] * out.aligned_shape[3] + y * out.aligned_shape[2] * out.aligned_shape[3] + x * out.aligned_shape[3] + ch, out.addr, out_dtype.width) check = memory.read_word( bat * out.aligned_shape[1] * out.aligned_shape[2] * out.aligned_shape[3] + y * out.aligned_shape[2] * out.aligned_shape[3] + x * out.aligned_shape[3] + ch, check_addr, out_dtype.width) if vthread.verilog.NotEql(orig, check): print('NG (', bat, y, x, ch, ') orig: ', orig, ' check: ', check) ok = False # else: # print('OK (', bat, y, x, ch, # ') orig: ', orig, ' check: ', check) if ok: print('# verify: PASSED') else: print('# verify: FAILED') vthread.finish() th = vthread.Thread(m, 'th_ctrl', clk, rst, ctrl) fsm = th.start() uut = m.Instance(targ, 'uut', params=m.connect_params(targ), ports=m.connect_ports(targ)) # simulation.setup_waveform(m, uut) simulation.setup_clock(m, clk, hperiod=5) init = simulation.setup_reset(m, resetn, m.make_reset(), period=100, polarity='low') init.add( Delay(10000000), Systask('finish'), ) # output source code if filename is not None: m.to_verilog(filename) # run simulation sim = simulation.Simulator(m, sim=simtype) rslt = sim.run(outputfile=outputfile) lines = rslt.splitlines() if simtype == 'verilator' and lines[-1].startswith('-'): rslt = '\n'.join(lines[:-1]) return rslt
def run(act_shape=(1, 7, 7, 15), act_dtype=ng.int32, out_dtype=ng.int32, factors=(1, 2, 2, 1), par=1, axi_datawidth=32, silent=False, filename=None, simtype='iverilog', outputfile=None): # create target hardware act = ng.placeholder(act_dtype, shape=act_shape, name='act') out = ng.upsampling2d(act, factors=factors, dtype=out_dtype, par=par) targ = ng.to_veriloggen([out], 'matrix_upsampling2d', silent=silent, config={'maxi_datawidth': axi_datawidth}) # verification data vact = np.arange(act.length, dtype=np.int64).reshape(act.shape) vout = ng.verify.upsampling2d(vact, factors=factors, dtype=out_dtype) # to memory image size_max = int(math.ceil( max(act.memory_size, out.memory_size) / 4096)) * 4096 check_addr = max(act.addr, out.addr) + size_max size_check = size_max tmp_addr = check_addr + size_check memimg_datawidth = 32 mem = np.zeros([1024 * 1024 * 8 // memimg_datawidth], dtype=np.int64) mem = mem + [100] axi.set_memory(mem, vact, memimg_datawidth, act_dtype.width, act.addr, max(int(math.ceil(axi_datawidth / act_dtype.width)), par)) axi.set_memory(mem, vout, memimg_datawidth, out_dtype.width, check_addr, max(int(math.ceil(axi_datawidth / out_dtype.width)), par)) # test controller m = Module('test') params = m.copy_params(targ) ports = m.copy_sim_ports(targ) clk = ports['CLK'] resetn = ports['RESETN'] rst = m.Wire('RST') rst.assign(Not(resetn)) # AXI memory model if outputfile is None: outputfile = os.path.splitext(os.path.basename(__file__))[0] + '.out' memimg_name = 'memimg_' + outputfile memory = axi.AxiMemoryModel(m, 'memory', clk, rst, datawidth=axi_datawidth, memimg=mem, memimg_name=memimg_name, memimg_datawidth=memimg_datawidth) memory.connect(ports, 'maxi') # AXI-Slave controller _saxi = vthread.AXIMLite(m, '_saxi', clk, rst, noio=True) _saxi.connect(ports, 'saxi') # timer time_counter = m.Reg('time_counter', 32, initval=0) seq = Seq(m, 'seq', clk, rst) seq(time_counter.inc()) def ctrl(): for i in range(100): pass ng.sim.set_global_addrs(_saxi, tmp_addr) start_time = time_counter.value ng.sim.start(_saxi) print('# start') ng.sim.wait(_saxi) end_time = time_counter.value print('# end') print('# execution cycles: %d' % (end_time - start_time)) # verify ok = True for bat in range(out.shape[0]): for y in range(out.shape[1]): for x in range(out.shape[2]): for ch in range(out.shape[3]): orig = memory.read_word( bat * out.aligned_shape[1] * out.aligned_shape[2] * out.aligned_shape[3] + y * out.aligned_shape[2] * out.aligned_shape[3] + x * out.aligned_shape[3] + ch, out.addr, out_dtype.width) check = memory.read_word( bat * out.aligned_shape[1] * out.aligned_shape[2] * out.aligned_shape[3] + y * out.aligned_shape[2] * out.aligned_shape[3] + x * out.aligned_shape[3] + ch, check_addr, out_dtype.width) if vthread.verilog.NotEql(orig, check): print('NG (', bat, y, x, ch, ') orig: ', orig, ' check: ', check) ok = False # else: # print('OK (', bat, y, x, ch, # ') orig: ', orig, ' check: ', check) if ok: print('# verify: PASSED') else: print('# verify: FAILED') vthread.finish() th = vthread.Thread(m, 'th_ctrl', clk, rst, ctrl) fsm = th.start() uut = m.Instance(targ, 'uut', params=m.connect_params(targ), ports=m.connect_ports(targ)) # simulation.setup_waveform(m, uut) simulation.setup_clock(m, clk, hperiod=5) init = simulation.setup_reset(m, resetn, m.make_reset(), period=100, polarity='low') init.add( Delay(1000000), Systask('finish'), ) # output source code if filename is not None: m.to_verilog(filename) # run simulation sim = simulation.Simulator(m, sim=simtype) rslt = sim.run(outputfile=outputfile) lines = rslt.splitlines() if simtype == 'verilator' and lines[-1].startswith('-'): rslt = '\n'.join(lines[:-1]) return rslt
def run(act_shape=(1, 32, 32, 3), act_dtype=ng.int32, weight_dtype=ng.int32, bias_dtype=ng.int32, scale_dtype=ng.int32, out_dtype=ng.int32, with_batchnorm=True, disable_fusion=False, conv2d_par_ich=1, conv2d_par_och=1, conv2d_par_col=1, conv2d_par_row=1, conv2d_concur_och=None, conv2d_stationary='filter', pool_par=1, elem_par=1, chunk_size=64, axi_datawidth=32, silent=False, filename=None, simtype='iverilog', outputfile=None): if not with_batchnorm: raise ValueError('with_batchnorm must be True for ResNet18.') # pytorch model model = torchvision.models.resnet18(pretrained=False) model.conv1.in_channels = act_shape[-1] model.fc = nn.Linear(in_features=model.fc.in_features, out_features=10, bias=True) # Pytorch to ONNX onnx_filename = 'resnet18.onnx' dummy_input = torch.randn(*act_shape).transpose(1, 3) input_names = ['act'] output_names = ['out'] model.eval() torch.onnx.export(model, dummy_input, onnx_filename, input_names=input_names, output_names=output_names) # ONNX to NNgen dtypes = {} (outputs, placeholders, variables, constants, operators) = ng.from_onnx(onnx_filename, value_dtypes=dtypes, default_placeholder_dtype=act_dtype, default_variable_dtype=weight_dtype, default_constant_dtype=weight_dtype, default_operator_dtype=out_dtype, default_scale_dtype=scale_dtype, default_bias_dtype=bias_dtype, disable_fusion=disable_fusion) # default linear quantization value_ranges = {'act': (0, 255)} ng.quantize(outputs, value_ranges=value_ranges) # set attribute for op in operators.values(): if isinstance(op, ng.conv2d): op.attribute(par_ich=conv2d_par_ich, par_och=conv2d_par_och, par_col=conv2d_par_col, par_row=conv2d_par_row, concur_och=conv2d_concur_och, stationary=conv2d_stationary) if isinstance(op, (ng.avg_pool, ng.max_pool, ng.avg_pool_serial, ng.max_pool_serial)): op.attribute(par=pool_par) if ng.is_elementwise_operator(op): op.attribute(par=elem_par) # create target hardware act = placeholders['act'] out = outputs['out'] targ = ng.to_veriloggen([out], 'onnx_resnet18', silent=silent, config={'maxi_datawidth': axi_datawidth}) # verification data vact = np.random.normal(size=act.length).reshape(act.shape) vact = np.clip(vact, -3.0, 3.0) vact_min_val, vact_max_val = value_ranges['act'] vact_max_abs_range = max(abs(vact_min_val), abs(vact_max_val)) vact_width = vact_max_abs_range.bit_length() + 1 vact = vact * (1.0 * (2 ** (vact_width - 1) - 1)) / 3.0 vact = np.round(vact).astype(np.int64) eval_outs = ng.eval([out], act=vact) vout = eval_outs[0] # exec on pytorch model_input = vact.astype(np.float32) if act.perm is not None: model_input = np.transpose(model_input, act.reversed_perm) model.eval() model_out = model(torch.from_numpy(model_input)).detach().numpy() if act.perm is not None and len(model_out.shape) == len(act.shape): model_out = np.transpose(model_out, act.perm) scaled_model_out = model_out * out.scale_factor mout = scaled_model_out.astype(np.int64) for bat in range(vout.shape[0]): vout_max = np.max(vout[bat]) vout_max_index = list(vout[bat]).index(vout_max) mout_max = np.max(mout[bat]) mout_max_index = list(mout[bat]).index(mout_max) print("# vout[%d]: max = %d, index = %d" % (bat, vout_max, vout_max_index)) print("# mout[%d]: max = %d, index = %d" % (bat, mout_max, mout_max_index)) # out_diff = vout - scaled_model_out # out_err = out_diff / (scaled_model_out + 0.00000001) # max_out_err = np.max(np.abs(out_err)) # breakpoint() # if max_out_err > 0.1: # raise ValueError("too large output error: %f > 0.1" % max_out_err) # to memory image param_data = ng.make_param_array(variables, constants, chunk_size) param_bytes = len(param_data) variable_addr = int(math.ceil((act.addr + act.memory_size) / chunk_size)) * chunk_size check_addr = int(math.ceil((variable_addr + param_bytes) / chunk_size)) * chunk_size tmp_addr = int(math.ceil((check_addr + out.memory_size) / chunk_size)) * chunk_size memimg_datawidth = 32 mem = np.zeros([1024 * 1024 * 256 // memimg_datawidth], dtype=np.int64) mem = mem + [100] # placeholder axi.set_memory(mem, vact, memimg_datawidth, act_dtype.width, act.addr, max(int(math.ceil(axi_datawidth / act_dtype.width)), conv2d_par_ich)) # parameters (variable and constant) axi.set_memory(mem, param_data, memimg_datawidth, 8, variable_addr) # verification data axi.set_memory(mem, vout, memimg_datawidth, act_dtype.width, check_addr, max(int(math.ceil(axi_datawidth / act_dtype.width)), conv2d_par_och)) # test controller m = Module('test') params = m.copy_params(targ) ports = m.copy_sim_ports(targ) clk = ports['CLK'] resetn = ports['RESETN'] rst = m.Wire('RST') rst.assign(Not(resetn)) # AXI memory model if outputfile is None: outputfile = os.path.splitext(os.path.basename(__file__))[0] + '.out' memimg_name = 'memimg_' + outputfile memory = axi.AxiMemoryModel(m, 'memory', clk, rst, datawidth=axi_datawidth, memimg=mem, memimg_name=memimg_name, memimg_datawidth=memimg_datawidth) memory.connect(ports, 'maxi') # AXI-Slave controller _saxi = vthread.AXIMLite(m, '_saxi', clk, rst, noio=True) _saxi.connect(ports, 'saxi') # timer time_counter = m.Reg('time_counter', 32, initval=0) seq = Seq(m, 'seq', clk, rst) seq( time_counter.inc() ) def ctrl(): for i in range(100): pass ng.sim.set_global_addrs(_saxi, tmp_addr) start_time = time_counter.value ng.sim.start(_saxi) print('# start') ng.sim.wait(_saxi) end_time = time_counter.value print('# end') print('# execution cycles: %d' % (end_time - start_time)) # verify ok = True for bat in range(out.shape[0]): for y in range(out.shape[1]): for x in range(out.shape[2]): for ch in range(out.shape[3]): orig = memory.read_word( bat * out.aligned_shape[1] * out.aligned_shape[2] * out.aligned_shape[3] + y * out.aligned_shape[2] * out.aligned_shape[3] + x * out.aligned_shape[3] + ch, out.addr, out_dtype.width) check = memory.read_word( bat * out.aligned_shape[1] * out.aligned_shape[2] * out.aligned_shape[3] + y * out.aligned_shape[2] * out.aligned_shape[3] + x * out.aligned_shape[3] + ch, check_addr, out_dtype.width) if vthread.verilog.NotEql(orig, check): print('NG (', bat, y, x, ch, ') orig: ', orig, ' check: ', check) ok = False # else: # print('OK (', bat, y, x, ch, # ') orig: ', orig, ' check: ', check) if ok: print('# verify: PASSED') else: print('# verify: FAILED') vthread.finish() th = vthread.Thread(m, 'th_ctrl', clk, rst, ctrl) fsm = th.start() uut = m.Instance(targ, 'uut', params=m.connect_params(targ), ports=m.connect_ports(targ)) # simulation.setup_waveform(m, uut) simulation.setup_clock(m, clk, hperiod=5) init = simulation.setup_reset(m, resetn, m.make_reset(), period=100, polarity='low') init.add( Delay(10000000), Systask('finish'), ) # output source code if filename is not None: m.to_verilog(filename) # run simulation sim = simulation.Simulator(m, sim=simtype) rslt = sim.run(outputfile=outputfile) lines = rslt.splitlines() if simtype == 'verilator' and lines[-1].startswith('-'): rslt = '\n'.join(lines[:-1]) return rslt
def run(a_shape=(15, 15), b_shape=(15, 15), bias_shape=None, scale_shape=None, a_dtype=ng.int32, b_dtype=ng.int32, bias_dtype=ng.int32, scale_dtype=ng.int32, c_dtype=ng.int32, rshift_mul=None, rshift_sum=None, rshift_out=None, act_func=None, par_left_col=1, par_left_row=1, par_out_col=1, concur_out_col=None, stationary='right', left_ram_size=None, right_ram_size=None, bias_ram_size=None, scale_ram_size=None, out_ram_size=None, axi_datawidth=32, silent=False, filename=None, simtype='iverilog', outputfile=None): # create target hardware a = ng.placeholder(a_dtype, shape=a_shape, name='a') b = ng.placeholder(b_dtype, shape=b_shape, name='b') if bias_shape is not None: bias = ng.placeholder(bias_dtype, bias_shape, name='bias') else: bias = None if scale_shape is not None: scale = ng.placeholder(scale_dtype, scale_shape, name='scale') else: scale = None transposed_a = False transposed_b = True c = ng.matmul(a, b, bias, scale, transposed_a, transposed_b, rshift_mul, rshift_sum, rshift_out, act_func, c_dtype, ng.int32, ng.int32, 'matmul', par_left_col, par_left_row, par_out_col, concur_out_col, stationary, left_ram_size, right_ram_size, bias_ram_size, scale_ram_size, None, None, None, out_ram_size) targ = ng.to_veriloggen([c], 'matrix_matmul', silent=silent, config={'maxi_datawidth': axi_datawidth}) # verification data va = np.arange(a.length, dtype=np.int64).reshape(a.shape) % [5] vb = np.arange(b.length, dtype=np.int64).reshape(b.shape) % [5] - [3] if bias is not None: vbias = np.arange(bias.length, dtype=np.int64).reshape( bias.shape) % [4] else: vbias = None if scale is not None: vscale = np.arange(scale.length, dtype=np.int64).reshape( scale.shape) % [6] else: vscale = None vc = ng.verify.matmul(va, vb, bias, scale, False, True, rshift_mul, rshift_sum, rshift_out, act_func, c_dtype, ng.int32, ng.int32, 'matmul', par_left_col, par_left_row, par_out_col, concur_out_col, stationary, left_ram_size, right_ram_size, bias_ram_size, scale_ram_size, None, None, None, out_ram_size, False, a_dtype, b_dtype, bias_dtype, scale_dtype) # to memory image size_max = int( math.ceil( max(a.memory_size, b.memory_size, bias.memory_size if bias is not None else 0, scale.memory_size if scale is not None else 0, c.memory_size) / 4096)) * 4096 check_addr = max(a.addr, b.addr, bias.addr if bias is not None else -1, scale.addr if scale is not None else -1, c.addr) + size_max size_check = size_max tmp_addr = check_addr + size_check memimg_datawidth = 32 mem = np.zeros([1024 * 1024 * 8 // memimg_datawidth], dtype=np.int64) mem = mem + [100] axi.set_memory( mem, va, memimg_datawidth, a_dtype.width, a.addr, max(int(math.ceil(axi_datawidth / a_dtype.width)), par_left_col)) axi.set_memory( mem, vb, memimg_datawidth, b_dtype.width, b.addr, max(int(math.ceil(axi_datawidth / b_dtype.width)), par_left_col)) if bias is not None: axi.set_memory( mem, vbias, memimg_datawidth, bias_dtype.width, bias.addr, max(int(math.ceil(axi_datawidth / bias_dtype.width)), par_out_col)) if scale is not None: axi.set_memory( mem, vscale, memimg_datawidth, scale_dtype.width, scale.addr, max(int(math.ceil(axi_datawidth / scale_dtype.width)), par_out_col)) axi.set_memory( mem, vc, memimg_datawidth, c_dtype.width, check_addr, max(int(math.ceil(axi_datawidth / c_dtype.width)), par_out_col)) # test controller m = Module('test') params = m.copy_params(targ) ports = m.copy_sim_ports(targ) clk = ports['CLK'] resetn = ports['RESETN'] rst = m.Wire('RST') rst.assign(Not(resetn)) # AXI memory model if outputfile is None: outputfile = os.path.splitext(os.path.basename(__file__))[0] + '.out' memimg_name = 'memimg_' + outputfile memory = axi.AxiMemoryModel(m, 'memory', clk, rst, datawidth=axi_datawidth, memimg=mem, memimg_name=memimg_name, memimg_datawidth=memimg_datawidth) memory.connect(ports, 'maxi') # AXI-Slave controller _saxi = vthread.AXIMLite(m, '_saxi', clk, rst, noio=True) _saxi.connect(ports, 'saxi') # timer time_counter = m.Reg('time_counter', 32, initval=0) seq = Seq(m, 'seq', clk, rst) seq(time_counter.inc()) def ctrl(): for i in range(100): pass ng.sim.set_global_addrs(_saxi, tmp_addr) start_time = time_counter.value ng.sim.start(_saxi) print('# start') ng.sim.wait(_saxi) end_time = time_counter.value print('# end') print('# execution cycles: %d' % (end_time - start_time)) # verify ok = True for i in range(c.shape[0]): for j in range(c.shape[1]): orig = memory.read_word(i * c.aligned_shape[1] + j, c.addr, c_dtype.width) check = memory.read_word(i * c.aligned_shape[1] + j, check_addr, c_dtype.width) if vthread.verilog.NotEql(orig, check): print(i, j, orig, check) ok = False if ok: print('# verify: PASSED') else: print('# verify: FAILED') vthread.finish() th = vthread.Thread(m, 'th_ctrl', clk, rst, ctrl) fsm = th.start() uut = m.Instance(targ, 'uut', params=m.connect_params(targ), ports=m.connect_ports(targ)) # simulation.setup_waveform(m, uut) simulation.setup_clock(m, clk, hperiod=5) init = simulation.setup_reset(m, resetn, m.make_reset(), period=100, polarity='low') init.add( Delay(1000000), Systask('finish'), ) # output source code if filename is not None: m.to_verilog(filename) # run simulation sim = simulation.Simulator(m, sim=simtype) rslt = sim.run(outputfile=outputfile) lines = rslt.splitlines() if simtype == 'verilator' and lines[-1].startswith('-'): rslt = '\n'.join(lines[:-1]) return rslt
def run(a_shape=(15, 15), b_shape=(15, 15), a_dtype=ng.int32, b_dtype=ng.int32, c_dtype=ng.int32, par=1, axi_datawidth=32, interrupt_name='irq', silent=False, filename=None, simtype='iverilog', outputfile=None): # create target hardware a = ng.placeholder(a_dtype, shape=a_shape, name='a') b = ng.placeholder(b_dtype, shape=b_shape, name='b') d = ng.add(a, b, dtype=c_dtype, par=par) e = ng.add(b, a, dtype=c_dtype, par=par) # SW returns ng.add(x, y) f = ng.extern([d, e], shape=a_shape, opcode=0x1, func=lambda x, y: x + y) g = ng.sub(f, a) # SW returns d as-is h = ng.extern([g], shape=a_shape, opcode=0x2, func=lambda x: x) c = ng.sub(h, b) targ = ng.to_veriloggen([c], 'matrix_extern', silent=silent, config={ 'maxi_datawidth': axi_datawidth, 'interrupt_name': interrupt_name }) # verification data va = np.arange(a.length, dtype=np.int64).reshape(a.shape) % [16] vb = np.arange(b.length, dtype=np.int64).reshape(b.shape) % [32] + [16] eval_outs = ng.eval([c], a=va, b=vb) vc = eval_outs[0] # to memory image size_max = int( math.ceil( max(a.memory_size, b.memory_size, c.memory_size) / 4096)) * 4096 check_addr = max(a.addr, b.addr, c.addr) + size_max size_check = size_max tmp_addr = check_addr + size_check memimg_datawidth = 32 mem = np.zeros([1024 * 1024 * 8 // (memimg_datawidth // 8)], dtype=np.int64) mem = mem + [100] axi.set_memory(mem, va, memimg_datawidth, a_dtype.width, a.addr, max(int(math.ceil(axi_datawidth / a_dtype.width)), par)) axi.set_memory(mem, vb, memimg_datawidth, b_dtype.width, b.addr, max(int(math.ceil(axi_datawidth / b_dtype.width)), par)) axi.set_memory(mem, vc, memimg_datawidth, c_dtype.width, check_addr, max(int(math.ceil(axi_datawidth / c_dtype.width)), par)) # test controller m = Module('test') params = m.copy_params(targ) ports = m.copy_sim_ports(targ) clk = ports['CLK'] resetn = ports['RESETN'] irq = ports[interrupt_name] rst = m.Wire('RST') rst.assign(Not(resetn)) # AXI memory model if outputfile is None: outputfile = os.path.splitext(os.path.basename(__file__))[0] + '.out' memimg_name = 'memimg_' + outputfile memory = axi.AxiMemoryModel(m, 'memory', clk, rst, datawidth=axi_datawidth, memimg_datawidth=memimg_datawidth, memimg=mem, memimg_name=memimg_name) memory.connect(ports, 'maxi') # AXI-Slave controller _saxi = vthread.AXIMLite(m, '_saxi', clk, rst, noio=True) _saxi.connect(ports, 'saxi') # timer time_counter = m.Reg('time_counter', 32, initval=0) seq = Seq(m, 'seq', clk, rst) seq(time_counter.inc()) num_rep = functools.reduce(lambda x, y: x * y, c.shape[:-1], 1) def irq_join(saxi, irq_bit): while irq == 0: pass araddr = ng.control_reg_interrupt_isr * 4 irq_stat = saxi.read(araddr) if irq_stat != irq_bit: print('# Unexpected irq signal: %d' % irq_stat) print('# verify: FAILED') vthread.finish() print('# irq stat = %d' % irq_stat) awaddr = ng.control_reg_interrupt_iar * 4 saxi.write(awaddr, irq_bit) def ctrl(): for i in range(100): pass ng.sim.set_global_addrs(_saxi, tmp_addr) araddr_ext_snd = ng.control_reg_extern_send * 4 awaddr_ext_rcv = ng.control_reg_extern_recv * 4 awaddr_irq_ier = ng.control_reg_interrupt_ier * 4 araddr_irq_isr = ng.control_reg_interrupt_isr * 4 awaddr_irq_iar = ng.control_reg_interrupt_iar * 4 _saxi.write(awaddr_irq_ier, 3) # irq enable ng.sim.sw_rst(_saxi) print('# 0st software reset (during idle)') for i in range(100): pass irq_stat = _saxi.read(araddr_irq_isr) if irq_stat != 0: print('# Unexpected irq signal: %d' % irq_stat) print('# verify: FAILED') vthread.finish() print('# irq stat = %d' % irq_stat) # no irq busy by software reset when idle start_time = time_counter.value ng.sim.start(_saxi) print('# 1st test start') # from extern-send irq_join(_saxi, 2) v = _saxi.read(araddr_ext_snd) print('# opcode = %d' % v) for i in range(num_rep): for j in range(c.shape[-1]): x_offset = tmp_addr - d.default_global_addr y_offset = tmp_addr - e.default_global_addr z_offset = tmp_addr - f.default_global_addr x = memory.read_word(i * c.aligned_shape[-1] + j, d.addr + x_offset, c_dtype.width) y = memory.read_word(i * c.aligned_shape[-1] + j, e.addr + y_offset, c_dtype.width) z = x + y memory.write_word(i * c.aligned_shape[-1] + j, f.addr + z_offset, z, c_dtype.width) # to extern-recv _saxi.write(awaddr_ext_rcv, 1) # from extern-send irq_join(_saxi, 2) v = _saxi.read(araddr_ext_snd) print('# opcode = %d' % v) # software reset ng.sim.sw_rst(_saxi) print('# 1st software reset (before resume)') # from extern-send irq_join(_saxi, 1) # restart ng.sim.start(_saxi) print('# Restart') # from extern-send irq_join(_saxi, 2) v = _saxi.read(araddr_ext_snd) print('# opcode = %d' % v) for i in range(num_rep): for j in range(c.shape[-1]): x_offset = tmp_addr - d.default_global_addr y_offset = tmp_addr - e.default_global_addr z_offset = tmp_addr - f.default_global_addr x = memory.read_word(i * c.aligned_shape[-1] + j, d.addr + x_offset, c_dtype.width) y = memory.read_word(i * c.aligned_shape[-1] + j, e.addr + y_offset, c_dtype.width) z = x + y memory.write_word(i * c.aligned_shape[-1] + j, f.addr + z_offset, z, c_dtype.width) # to extern-recv _saxi.write(awaddr_ext_rcv, 1) # from extern-send irq_join(_saxi, 2) v = _saxi.read(araddr_ext_snd) print('# opcode = %d' % v) for i in range(num_rep): for j in range(c.shape[-1]): x_offset = tmp_addr - g.default_global_addr z_offset = tmp_addr - h.default_global_addr x = memory.read_word(i * c.aligned_shape[-1] + j, g.addr + x_offset, c_dtype.width) z = x memory.write_word(i * c.aligned_shape[-1] + j, h.addr + z_offset, z, c_dtype.width) # to extern-recv _saxi.write(awaddr_ext_rcv, 1) # from extern-send irq_join(_saxi, 1) #ng.sim.wait(_saxi) end_time = time_counter.value print('# end') print('# execution cycles: %d' % (end_time - start_time)) # verify ok_1st = True for i in range(num_rep): for j in range(c.shape[-1]): orig = memory.read_word(i * c.aligned_shape[-1] + j, c.addr, c_dtype.width) check = memory.read_word(i * c.aligned_shape[-1] + j, check_addr, c_dtype.width) if vthread.verilog.NotEql(orig, check): print('NG', i, j, orig, check) ok_1st = False # else: # print('OK', i, j, orig, check) # 2nd test # start start_time = time_counter.value ng.sim.start(_saxi) print('# 2nd test start') # from extern-send irq_join(_saxi, 2) v = _saxi.read(araddr_ext_snd) print('# opcode = %d' % v) for i in range(num_rep): for j in range(c.shape[-1]): x_offset = tmp_addr - d.default_global_addr y_offset = tmp_addr - e.default_global_addr z_offset = tmp_addr - f.default_global_addr x = memory.read_word(i * c.aligned_shape[-1] + j, d.addr + x_offset, c_dtype.width) y = memory.read_word(i * c.aligned_shape[-1] + j, e.addr + y_offset, c_dtype.width) z = x + y memory.write_word(i * c.aligned_shape[-1] + j, f.addr + z_offset, z, c_dtype.width) # to extern-recv _saxi.write(awaddr_ext_rcv, 1) while (memory.waddr.awvalid) == 0: pass ng.sim.sw_rst(_saxi) print('# 2nd software reset (during Master AXI transaction)') irq_join(_saxi, 1) # irq busy by software reset # restart ng.sim.start(_saxi) print('# Restart') # from extern-send irq_join(_saxi, 2) araddr = ng.control_reg_extern_send * 4 print('# opcode = %d' % v) for i in range(num_rep): for j in range(c.shape[-1]): x_offset = tmp_addr - d.default_global_addr y_offset = tmp_addr - e.default_global_addr z_offset = tmp_addr - f.default_global_addr x = memory.read_word(i * c.aligned_shape[-1] + j, d.addr + x_offset, c_dtype.width) y = memory.read_word(i * c.aligned_shape[-1] + j, e.addr + y_offset, c_dtype.width) z = x + y memory.write_word(i * c.aligned_shape[-1] + j, f.addr + z_offset, z, c_dtype.width) # to extern-recv _saxi.write(awaddr_ext_rcv, 1) # from extern-send irq_join(_saxi, 2) v = _saxi.read(araddr_ext_snd) print('# opcode = %d' % v) for i in range(num_rep): for j in range(c.shape[-1]): x_offset = tmp_addr - g.default_global_addr z_offset = tmp_addr - h.default_global_addr x = memory.read_word(i * c.aligned_shape[-1] + j, g.addr + x_offset, c_dtype.width) z = x memory.write_word(i * c.aligned_shape[-1] + j, h.addr + z_offset, z, c_dtype.width) # to extern-recv _saxi.write(awaddr_ext_rcv, 1) # termination irq_join(_saxi, 1) #ng.sim.wait(_saxi) end_time = time_counter.value print('# end') print('# execution cycles: %d' % (end_time - start_time)) # verify ok_2nd = True for i in range(num_rep): for j in range(c.shape[-1]): orig = memory.read_word(i * c.aligned_shape[-1] + j, c.addr, c_dtype.width) check = memory.read_word(i * c.aligned_shape[-1] + j, check_addr, c_dtype.width) if vthread.verilog.NotEql(orig, check): print('NG', i, j, orig, check) ok_2nd = False # else: # print('OK', i, j, orig, check) if ok_1st and ok_2nd: print('# verify: PASSED') else: print('# verify: FAILED') vthread.finish() th = vthread.Thread(m, 'th_ctrl', clk, rst, ctrl) fsm = th.start() uut = m.Instance(targ, 'uut', params=m.connect_params(targ), ports=m.connect_ports(targ)) # simulation.setup_waveform(m, uut) simulation.setup_clock(m, clk, hperiod=5) init = simulation.setup_reset(m, resetn, m.make_reset(), period=100, polarity='low') init.add( Delay(1000000), Systask('finish'), ) # output source code if filename is not None: m.to_verilog(filename) # run simulation sim = simulation.Simulator(m, sim=simtype) rslt = sim.run(outputfile=outputfile) lines = rslt.splitlines() if simtype == 'verilator' and lines[-1].startswith('-'): rslt = '\n'.join(lines[:-1]) return rslt
def mkTest(ich=3, och=10, ch=64, ksize=3, stride=1, col=28, row=28): # create target hardware # layer 0: conv2d, max_pool_serial, relu input_layer = ng.placeholder(ng.int32, shape=(1, row, col, ich), name='input_layer') w0 = ng.variable(ng.int32, shape=(ch, ksize, ksize, ich), name='w0') a0 = ng.conv2d(input_layer, w0, strides=(1, stride, stride, 1)) a0 = ng.max_pool_serial(a0, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1)) a0 = ng.relu(a0) # layer 1: conv2d, relu, reshape w1 = ng.variable(ng.int32, shape=(ch, ksize, ksize, a0.shape[-1]), name='w1') a1 = ng.conv2d(a0, w1, strides=(1, stride, stride, 1)) a1 = ng.relu(a1) a1 = ng.reshape(a1, [-1]) # layer 2: full-connection w2 = ng.variable(ng.int32, shape=(16, a1.shape[-1]), name='w2') a2 = ng.matmul(a1, w2, transposed_b=True) a2 = ng.relu(a2) # layer 3: full-connection w3 = ng.variable(ng.int32, shape=(och, a2.shape[-1]), name='w3') output_layer = ng.matmul(a2, w3, transposed_b=True, name='output_layer') targ = ng.to_veriloggen([output_layer], 'cnn') #targ = ng.to_ipxact([output_layer], 'cnn') # test controller m = Module('test') params = m.copy_params(targ) ports = m.copy_sim_ports(targ) clk = ports['CLK'] resetn = ports['RESETN'] rst = m.Wire('RST') rst.assign(Not(resetn)) # AXI memory model memory = axi.AxiMemoryModel(m, 'memory', clk, rst, mem_addrwidth=23) memory.connect(ports, 'maxi') # AXI-Slave controller _saxi = vthread.AXIMLite(m, '_saxi', clk, rst, noio=True) _saxi.connect(ports, 'saxi') # timer time_counter = m.Reg('time_counter', 32, initval=0) seq = Seq(m, 'seq', clk, rst) seq(time_counter.inc()) def ctrl(): for i in range(100): pass start_time = time_counter.value ng.sim.start(_saxi) print('# start') ng.sim.wait(_saxi) end_time = time_counter.value print('# end') print('# execution cycles: %d' % (end_time - start_time)) vthread.finish() th = vthread.Thread(m, 'th_ctrl', clk, rst, ctrl) fsm = th.start() uut = m.Instance(targ, 'uut', params=m.connect_params(targ), ports=m.connect_ports(targ)) # simulation.setup_waveform(m, uut) simulation.setup_clock(m, clk, hperiod=5) init = simulation.setup_reset(m, resetn, m.make_reset(), period=100, polarity='low') init.add( Delay(10000000), Systask('finish'), ) return m
def run(a_shape=(15, 15), b_shape=(15, 15), a_dtype=ng.int32, b_dtype=ng.int32, c_dtype=ng.int32, par=1, axi_datawidth=32, silent=False, filename=None, simtype='iverilog', outputfile=None): # create target hardware a = ng.placeholder(a_dtype, shape=a_shape, name='a') b = ng.placeholder(b_dtype, shape=b_shape, name='b') d = ng.add(a, b, dtype=c_dtype, par=par) e = ng.add(b, a, dtype=c_dtype, par=par) # SW returns ng.add(x, y) f = ng.extern([d, e], shape=a_shape, opcode=0x1) g = ng.sub(f, a) # SW returns d as-is h = ng.extern([g], shape=a_shape, opcode=0x2) c = ng.sub(h, b) targ = ng.to_veriloggen([c], 'matrix_extern', silent=silent, config={'maxi_datawidth': axi_datawidth}) # verification data va = np.arange(a.length, dtype=np.int64).reshape(a.shape) % [16] vb = np.arange(b.length, dtype=np.int64).reshape(b.shape) % [32] + [16] vd = ng.verify.add(va, vb, dtype=c_dtype, par=par, x_dtype=a_dtype, y_dtype=b_dtype) ve = ng.verify.add(vb, va, dtype=c_dtype, par=par, x_dtype=b_dtype, y_dtype=a_dtype) vf = ng.verify.extern([vd, ve], shape=a_shape, opcode=0x1, func=lambda x, y: x + y) vg = ng.verify.sub(vf, va, x_dtype=c_dtype, y_dtype=c_dtype) vh = ng.verify.extern([vg], shape=a_shape, opcode=0x2, func=lambda x: x) vc = ng.verify.sub(vh, vb, x_dtype=c_dtype, y_dtype=c_dtype) # to memory image size_max = int(math.ceil(max(a.memory_size, b.memory_size, c.memory_size) / 4096)) * 4096 check_addr = max(a.addr, b.addr, c.addr) + size_max size_check = size_max tmp_addr = check_addr + size_check memimg_datawidth = 32 mem = np.zeros([1024 * 1024 * 8 // memimg_datawidth], dtype=np.int64) mem = mem + [100] axi.set_memory(mem, va, memimg_datawidth, a_dtype.width, a.addr, max(int(math.ceil(axi_datawidth / a_dtype.width)), par)) axi.set_memory(mem, vb, memimg_datawidth, b_dtype.width, b.addr, max(int(math.ceil(axi_datawidth / b_dtype.width)), par)) axi.set_memory(mem, vc, memimg_datawidth, c_dtype.width, check_addr, max(int(math.ceil(axi_datawidth / c_dtype.width)), par)) # test controller m = Module('test') params = m.copy_params(targ) ports = m.copy_sim_ports(targ) clk = ports['CLK'] resetn = ports['RESETN'] rst = m.Wire('RST') rst.assign(Not(resetn)) # AXI memory model if outputfile is None: outputfile = os.path.splitext(os.path.basename(__file__))[0] + '.out' memimg_name = 'memimg_' + outputfile memory = axi.AxiMemoryModel(m, 'memory', clk, rst, datawidth=axi_datawidth, memimg_datawidth=memimg_datawidth, memimg=mem, memimg_name=memimg_name) memory.connect(ports, 'maxi') # AXI-Slave controller _saxi = vthread.AXIMLite(m, '_saxi', clk, rst, noio=True) _saxi.connect(ports, 'saxi') # timer time_counter = m.Reg('time_counter', 32, initval=0) seq = Seq(m, 'seq', clk, rst) seq( time_counter.inc() ) num_rep = functools.reduce(lambda x, y: x * y, c.shape[:-1], 1) def ctrl(): for i in range(100): pass ng.sim.set_global_addrs(_saxi, tmp_addr) start_time = time_counter.value ng.sim.start(_saxi) print('# start') # from extern-send araddr = ng.control_reg_extern_send * 4 v = _saxi.read(araddr) while v == 0: v = _saxi.read(araddr) print('# opcode = %d' % v) for i in range(num_rep): for j in range(c.shape[-1]): x_offset = tmp_addr - d.default_global_addr y_offset = tmp_addr - e.default_global_addr z_offset = tmp_addr - f.default_global_addr x = memory.read_word(i * c.aligned_shape[-1] + j, d.addr + x_offset, c_dtype.width) y = memory.read_word(i * c.aligned_shape[-1] + j, e.addr + y_offset, c_dtype.width) z = x + y memory.write_word(i * c.aligned_shape[-1] + j, f.addr + z_offset, z, c_dtype.width) # to extern-recv awaddr = ng.control_reg_extern_recv * 4 _saxi.write(awaddr, 1) # from extern-send araddr = ng.control_reg_extern_send * 4 v = _saxi.read(araddr) while v == 0: v = _saxi.read(araddr) print('# opcode = %d' % v) for i in range(num_rep): for j in range(c.shape[-1]): x_offset = tmp_addr - g.default_global_addr z_offset = tmp_addr - h.default_global_addr x = memory.read_word(i * c.aligned_shape[-1] + j, g.addr + x_offset, c_dtype.width) z = x memory.write_word(i * c.aligned_shape[-1] + j, h.addr + z_offset, z, c_dtype.width) # to extern-recv awaddr = ng.control_reg_extern_recv * 4 _saxi.write(awaddr, 1) ng.sim.wait(_saxi) end_time = time_counter.value print('# end') print('# execution cycles: %d' % (end_time - start_time)) # verify ok = True for i in range(num_rep): for j in range(c.shape[-1]): orig = memory.read_word(i * c.aligned_shape[-1] + j, c.addr, c_dtype.width) check = memory.read_word(i * c.aligned_shape[-1] + j, check_addr, c_dtype.width) if vthread.verilog.NotEql(orig, check): print('NG', i, j, orig, check) ok = False # else: # print('OK', i, j, orig, check) if ok: print('# verify: PASSED') else: print('# verify: FAILED') vthread.finish() th = vthread.Thread(m, 'th_ctrl', clk, rst, ctrl) fsm = th.start() uut = m.Instance(targ, 'uut', params=m.connect_params(targ), ports=m.connect_ports(targ)) # simulation.setup_waveform(m, uut) simulation.setup_clock(m, clk, hperiod=5) init = simulation.setup_reset(m, resetn, m.make_reset(), period=100, polarity='low') init.add( Delay(1000000), Systask('finish'), ) # output source code if filename is not None: m.to_verilog(filename) # run simulation sim = simulation.Simulator(m, sim=simtype) rslt = sim.run(outputfile=outputfile) lines = rslt.splitlines() if simtype == 'verilator' and lines[-1].startswith('-'): rslt = '\n'.join(lines[:-1]) return rslt
def mkTest(n_input=784, n_classes=10): # create target hardware x = ng.placeholder(ng.int32, shape=[n_input]) w1 = ng.variable(ng.int32, shape=(n_input, n_input), name='h1') w2 = ng.variable(ng.int32, shape=(n_input, n_input), name='h2') w3 = ng.variable(ng.int32, shape=(n_classes, n_input), name='out') l1 = ng.matmul(x, w1, transposed_b=True) l1 = ng.relu(l1) l2 = ng.matmul(l1, w2, transposed_b=True) l2 = ng.relu(l2) out = ng.matmul(l2, w3, transposed_b=True) targ = ng.to_veriloggen([out], 'mlp') #targ = ng.to_ipxact([model], 'mlp') # test controller m = Module('test') params = m.copy_params(targ) ports = m.copy_sim_ports(targ) clk = ports['CLK'] resetn = ports['RESETN'] rst = m.Wire('RST') rst.assign(Not(resetn)) # AXI memory model memory = axi.AxiMemoryModel(m, 'memory', clk, rst) memory.connect(ports, 'maxi') # AXI-Slave controller _saxi = vthread.AXIMLite(m, '_saxi', clk, rst, noio=True) _saxi.connect(ports, 'saxi') # timer time_counter = m.Reg('time_counter', 32, initval=0) seq = Seq(m, 'seq', clk, rst) seq(time_counter.inc()) def ctrl(): for i in range(100): pass start_time = time_counter.value ng.sim.start(_saxi) print('# start') ng.sim.wait(_saxi) end_time = time_counter.value print('# end') print('# execution cycles: %d' % (end_time - start_time)) vthread.finish() th = vthread.Thread(m, 'th_ctrl', clk, rst, ctrl) fsm = th.start() uut = m.Instance(targ, 'uut', params=m.connect_params(targ), ports=m.connect_ports(targ)) # simulation.setup_waveform(m, uut) simulation.setup_clock(m, clk, hperiod=5) init = simulation.setup_reset(m, resetn, m.make_reset(), period=100, polarity='low') init.add( Delay(1000000), Systask('finish'), ) return m