コード例 #1
0
    def test_build_module_graph(self):
        big_model = BigModel()
        g = build_module_graph(big_model, torch.randn(2, 1, 28, 28))
        print(g.name_to_node.keys())
        leaf_modules = set([
            'backbone1.conv1', 'backbone2.bn1', 'backbone2.bn2',
            'backbone2.conv1', 'backbone2.conv2', 'backbone2.fc1',
            'backbone2.fc2', 'fc3'
        ])

        assert set(g.leaf_modules) == leaf_modules
        assert not leaf_modules - set(g.name_to_node.keys())
        assert g.find_successors('backbone2.conv1') == ['backbone2.bn1']
        assert g.find_successors('backbone2.conv2') == ['backbone2.bn2']
        assert g.find_predecessors('backbone2.bn1') == ['backbone2.conv1']
        assert g.find_predecessors('backbone2.bn2') == ['backbone2.conv2']
コード例 #2
0
 def __init__(self, model, dummy_input, masks_file, map_location=None):
     """
     Parameters
     ----------
     model : pytorch model
         The model user wants to speed up
     dummy_input : pytorch tensor
         The dummy input for ```jit.trace```, users should put it on right device before pass in
     masks_file : str
         The path of user provided mask file
     map_location : str
         the device on which masks are placed, same to map_location in ```torch.load```
     """
     self.bound_model = model
     self.masks = torch.load(masks_file, map_location)
     self.inferred_masks = dict()  # key: module_name, value: ModuleMasks
     self.torch_graph = build_module_graph(model, dummy_input)
コード例 #3
0
for modeltype, dir in enumerate(Dirs):
    dir_path = os.path.join(Prefix, dir)
    files = os.listdir(dir_path)
    print(files)
    for filename in files:
        file_path = os.path.join(dir_path, filename)
        with open(file_path, 'r') as jf:
            data = json.load(jf)
            for model in data:
                total_graph_count += 1
                model_cfg = model[0]
                latencies = model[1]
                bound_model = build_model(construct_model_func[modeltype], model_cfg)
                # print(bound_model)
                torch_graph = build_module_graph(bound_model, dummy_input)
                op_nodes = torch_graph.nodes_py.nodes_op
                n_count = len(op_nodes)
                # write the graph indicator
                write_graph_indicator(n_count, total_graph_count)
                node_id = {}
                for i in range(1, n_count+1):
                    cur_nodeid = total_node_count + i
                    unique_name = op_nodes[i-1].unique_name
                    node_id[unique_name] = cur_nodeid
                # write the graph adjacent matrix
                write_graph_adjacent(node_id, torch_graph)
                write_node_label(torch_graph)
                write_graph_label(str(type(bound_model)))
                model_latency = latencies['model'][2:-2]
                latency_mean, latency_std = np.mean(model_latency), np.std(model_latency)