コード例 #1
0
    def test_tf_fpgm_pruner(self):
        model = get_tf_model()
        config_list = [{'sparsity': 0.2, 'op_types': ['Conv2D']}]

        pruner = tf_compressor.FPGMPruner(model, config_list)
        weights = model.layers[2].weights
        weights[0] = np.array(w).astype(np.float32).transpose(
            [2, 3, 0, 1]).transpose([0, 1, 3, 2])
        model.layers[2].set_weights([weights[0], weights[1].numpy()])

        layer = tf_compressor.compressor.LayerInfo(model.layers[2])
        masks = pruner.calc_mask(layer, config_list[0]).numpy()
        masks = masks.reshape((-1, masks.shape[-1])).transpose([1, 0])

        assert all(
            masks.sum((1)) == np.array(
                [45., 45., 45., 45., 0., 0., 45., 45., 45., 45.]))
コード例 #2
0
ファイル: test_compressor.py プロジェクト: wtzl12519/nni
 def test_tf_fpgm_pruner(self):
     configure_list = [{'sparsity': 0.5, 'op_types': ['Conv2D']}]
     tf_compressor.FPGMPruner(get_tf_mnist_model(),
                              configure_list).compress()