コード例 #1
0
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 stride=1,
                 expand_ratio=6,
                 mid_channels=None):
        super(MBInvertedConvLayer, self).__init__()

        self.in_channels = in_channels
        self.out_channels = out_channels

        self.kernel_size = kernel_size
        self.stride = stride
        self.expand_ratio = expand_ratio
        self.mid_channels = mid_channels

        if self.mid_channels is None:
            feature_dim = round(self.in_channels * self.expand_ratio)
        else:
            feature_dim = self.mid_channels

        if self.expand_ratio == 1:
            self.inverted_bottleneck = nn.Sequential()
        else:
            self.inverted_bottleneck = nn.Sequential(
                OrderedDict([
                    ('conv',
                     nn.Conv2d(self.in_channels,
                               feature_dim,
                               1,
                               1,
                               0,
                               bias=False)),
                    ('bn', nn.BatchNorm2d(feature_dim)),
                    ('act', nn.ReLU6(inplace=True)),
                ]))

        pad = get_same_padding(self.kernel_size)
        self.depth_conv = nn.Sequential(
            OrderedDict([
                ('conv',
                 nn.Conv2d(feature_dim,
                           feature_dim,
                           kernel_size,
                           stride,
                           pad,
                           groups=feature_dim,
                           bias=False)),
                ('bn', nn.BatchNorm2d(feature_dim)),
                ('act', nn.ReLU6(inplace=True)),
            ]))

        self.point_linear = nn.Sequential(
            OrderedDict([
                ('conv',
                 nn.Conv2d(feature_dim, out_channels, 1, 1, 0, bias=False)),
                ('bn', nn.BatchNorm2d(out_channels)),
            ]))
コード例 #2
0
 def __init__(self, alpha, depths, convops, kernel_sizes, num_layers,
              skips, num_classes=1000, dropout=0.2):
     super().__init__()
     assert alpha > 0.0
     assert len(depths) == len(convops) == len(kernel_sizes) == len(num_layers) == len(skips) == 7
     self.alpha = alpha
     self.num_classes = num_classes
     depths = _get_depths([_FIRST_DEPTH] + depths, alpha)
     base_filter_sizes = [16, 24, 40, 80, 96, 192, 320]
     exp_ratios = [3, 3, 3, 6, 6, 6, 6]
     strides = [1, 2, 2, 2, 1, 2, 1]
     layers = [
         # First layer: regular conv.
         nn.Conv2d(3, depths[0], 3, padding=1, stride=2, bias=False),
         nn.BatchNorm2d(depths[0], momentum=_BN_MOMENTUM),
         nn.ReLU(inplace=True),
     ]
     count = 0
     # for conv, prev_depth, depth, ks, skip, stride, repeat, exp_ratio in \
     #        zip(convops, depths[:-1], depths[1:], kernel_sizes, skips, strides, num_layers, exp_ratios):
     for filter_size, exp_ratio, stride in zip(base_filter_sizes, exp_ratios, strides):
         # TODO: restrict that "choose" can only be used within mutator
         ph = nn.Placeholder(label=f'mutable_{count}', **{
             'kernel_size_options': [1, 3, 5],
             'n_layer_options': [1, 2, 3, 4],
             'op_type_options': ['__mutated__.base_mnasnet.RegularConv',
                                 '__mutated__.base_mnasnet.DepthwiseConv',
                                 '__mutated__.base_mnasnet.MobileConv'],
             # 'se_ratio_options': [0, 0.25],
             'skip_options': ['identity', 'no'],
             'n_filter_options': [int(filter_size*x) for x in [0.75, 1.0, 1.25]],
             'exp_ratio': exp_ratio,
             'stride': stride,
             'in_ch': depths[0] if count == 0 else None
         })
         layers.append(ph)
         '''if conv == "mconv":
             # MNASNet blocks: stacks of inverted residuals.
             layers.append(_stack_inverted_residual(prev_depth, depth, ks, skip,
                                                    stride, exp_ratio, repeat, _BN_MOMENTUM))
         else:
             # Normal conv and depth-separated conv
             layers += _stack_normal_conv(prev_depth, depth, ks, skip, conv == "dconv",
                                          stride, repeat, _BN_MOMENTUM)'''
         count += 1
         if count >= 2:
             break
     layers += [
         # Final mapping to classifier input.
         nn.Conv2d(depths[7], 1280, 1, padding=0, stride=1, bias=False),
         nn.BatchNorm2d(1280, momentum=_BN_MOMENTUM),
         nn.ReLU(inplace=True),
     ]
     self.layers = nn.Sequential(*layers)
     self.classifier = nn.Sequential(nn.Dropout(p=dropout, inplace=True),
                                     nn.Linear(1280, num_classes))
     self._initialize_weights()
コード例 #3
0
ファイル: base_mnasnet.py プロジェクト: maxpark/nni
    def __init__(self, kernel_size, in_ch, out_ch, skip, exp_ratio, stride):
        super().__init__()
        self.kernel_size = kernel_size
        self.in_ch = in_ch
        self.out_ch = out_ch
        self.skip = skip
        self.exp_ratio = exp_ratio
        self.stride = stride

        mid_ch = in_ch * exp_ratio
        self.layers = nn.Sequential(
            # Pointwise
            nn.Conv2d(in_ch, mid_ch, 1, bias=False),
            nn.BatchNorm2d(mid_ch, momentum=BN_MOMENTUM),
            nn.ReLU(inplace=False),
            # Depthwise
            nn.Conv2d(mid_ch,
                      mid_ch,
                      kernel_size,
                      padding=(kernel_size - 1) // 2,
                      stride=stride,
                      groups=mid_ch,
                      bias=False),
            nn.BatchNorm2d(mid_ch, momentum=BN_MOMENTUM),
            nn.ReLU(inplace=False),
            # Linear pointwise. Note that there's no activation.
            nn.Conv2d(mid_ch, out_ch, 1, bias=False),
            nn.BatchNorm2d(out_ch, momentum=BN_MOMENTUM))
コード例 #4
0
def _stack_normal_conv(in_ch, out_ch, kernel_size, skip, dconv, stride, repeats, bn_momentum):
    assert repeats >= 1
    stack = []
    for i in range(repeats):
        s = stride if i == 0 else 1
        if dconv:
            modules = [
                nn.Conv2d(in_ch, in_ch, kernel_size, padding=kernel_size // 2, stride=s, groups=in_ch, bias=False),
                nn.BatchNorm2d(in_ch, momentum=bn_momentum),
                nn.ReLU(inplace=True),
                nn.Conv2d(in_ch, out_ch, 1, padding=0, stride=1, bias=False),
                nn.BatchNorm2d(out_ch, momentum=bn_momentum)
            ]
        else:
            modules = [
                nn.Conv2d(in_ch, out_ch, kernel_size, padding=kernel_size // 2, stride=s, bias=False),
                nn.ReLU(inplace=True),
                nn.BatchNorm2d(out_ch, momentum=bn_momentum)
            ]
        if skip and in_ch == out_ch and s == 1:
            # use different implementation for skip and noskip to align with pytorch
            stack.append(_ResidualBlock(nn.Sequential(*modules)))
        else:
            stack += modules
        in_ch = out_ch
    return stack
コード例 #5
0
ファイル: ops.py プロジェクト: xxlya/COS598D_Assignment3
 def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True):
     super().__init__()
     self.net = nn.Sequential(
         nn.ReLU(),
         nn.Conv2d(C_in, C_out, kernel_size, stride, padding, bias=False),
         nn.BatchNorm2d(C_out, affine=affine)
     )
コード例 #6
0
ファイル: base_mnasnet.py プロジェクト: maxpark/nni
 def __init__(self,
              in_ch,
              out_ch,
              kernel_size,
              stride,
              expansion_factor,
              skip,
              bn_momentum=0.1):
     super(_InvertedResidual, self).__init__()
     assert stride in [1, 2]
     assert kernel_size in [3, 5]
     mid_ch = in_ch * expansion_factor
     self.apply_residual = skip and in_ch == out_ch and stride == 1
     self.layers = nn.Sequential(
         # Pointwise
         nn.Conv2d(in_ch, mid_ch, 1, bias=False),
         nn.BatchNorm2d(mid_ch, momentum=bn_momentum),
         nn.ReLU(inplace=False),
         # Depthwise
         nn.Conv2d(mid_ch,
                   mid_ch,
                   kernel_size,
                   padding=kernel_size // 2,
                   stride=stride,
                   groups=mid_ch,
                   bias=False),
         nn.BatchNorm2d(mid_ch, momentum=bn_momentum),
         nn.ReLU(inplace=False),
         # Linear pointwise. Note that there's no activation.
         nn.Conv2d(mid_ch, out_ch, 1, bias=False),
         nn.BatchNorm2d(out_ch, momentum=bn_momentum))
コード例 #7
0
            def _make_layer(self, block, planes, blocks, stride=1):
                downsample = None
                if stride != 1 or self.inplanes != planes * block.expansion:
                    downsample = nn.Sequential(
                        conv1x1(self.inplanes, planes * block.expansion,
                                stride),
                        nn.BatchNorm2d(planes * block.expansion),
                    )

                layers = []
                layers.append(block(self.inplanes, planes, stride, downsample))
                self.inplanes = planes * block.expansion
                for _ in range(1, blocks):
                    layers.append(block(self.inplanes, planes))

                return nn.Sequential(*layers)
コード例 #8
0
    def __init__(self,
                 input_size=224,
                 first_conv_channels=16,
                 last_conv_channels=1024,
                 n_classes=1000,
                 affine=False):
        super().__init__()

        assert input_size % 32 == 0
        self.stage_blocks = [4, 4, 8, 4]
        self.stage_channels = [64, 160, 320, 640]
        self._input_size = input_size
        self._feature_map_size = input_size
        self._first_conv_channels = first_conv_channels
        self._last_conv_channels = last_conv_channels
        self._n_classes = n_classes
        self._affine = affine
        self._layerchoice_count = 0

        # building first layer
        self.first_conv = nn.Sequential(
            nn.Conv2d(3, first_conv_channels, 3, 2, 1, bias=False),
            nn.BatchNorm2d(first_conv_channels, affine=affine),
            nn.ReLU(inplace=True),
        )
        self._feature_map_size //= 2

        p_channels = first_conv_channels
        features = []
        for num_blocks, channels in zip(self.stage_blocks,
                                        self.stage_channels):
            features.extend(self._make_blocks(num_blocks, p_channels,
                                              channels))
            p_channels = channels
        self.features = nn.Sequential(*features)

        self.conv_last = nn.Sequential(
            nn.Conv2d(p_channels, last_conv_channels, 1, 1, 0, bias=False),
            nn.BatchNorm2d(last_conv_channels, affine=affine),
            nn.ReLU(inplace=True),
        )
        self.globalpool = nn.AvgPool2d(self._feature_map_size)
        self.dropout = nn.Dropout(0.1)
        self.classifier = nn.Sequential(
            nn.Linear(last_conv_channels, n_classes, bias=False), )

        self._initialize_weights()
コード例 #9
0
def _stack_inverted_residual(in_ch, out_ch, kernel_size, skip, stride, exp_factor, repeats, bn_momentum):
    """ Creates a stack of inverted residuals. """
    assert repeats >= 1
    # First one has no skip, because feature map size changes.
    first = _InvertedResidual(in_ch, out_ch, kernel_size, stride, exp_factor, skip, bn_momentum=bn_momentum)
    remaining = []
    for _ in range(1, repeats):
        remaining.append(_InvertedResidual(out_ch, out_ch, kernel_size, 1, exp_factor, skip, bn_momentum=bn_momentum))
    return nn.Sequential(first, *remaining)
コード例 #10
0
ファイル: ops.py プロジェクト: xxlya/COS598D_Assignment3
 def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine=True):
     super().__init__()
     self.net = nn.Sequential(
         nn.ReLU(),
         nn.Conv2d(C_in, C_in, kernel_size, stride, padding, dilation=dilation, groups=C_in,
                   bias=False),
         nn.Conv2d(C_in, C_out, 1, stride=1, padding=0, bias=False),
         nn.BatchNorm2d(C_out, affine=affine)
     )
コード例 #11
0
ファイル: shufflenet.py プロジェクト: microsoft/nni
    def __init__(self,
                 in_channels: int,
                 out_channels: int,
                 mid_channels: int,
                 *,
                 kernel_size: int,
                 stride: int,
                 sequence: str = "pdp",
                 affine: bool = True):
        super().__init__()
        assert stride in [1, 2]
        assert kernel_size in [3, 5, 7]
        self.channels = in_channels // 2 if stride == 1 else in_channels
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.mid_channels = mid_channels
        self.kernel_size = kernel_size
        self.stride = stride
        self.pad = kernel_size // 2
        self.oup_main = out_channels - self.channels
        self.affine = affine
        assert self.oup_main > 0

        self.branch_main = nn.Sequential(
            *self._decode_point_depth_conv(sequence))

        if stride == 2:
            self.branch_proj = nn.Sequential(
                # dw
                nn.Conv2d(self.channels,
                          self.channels,
                          kernel_size,
                          stride,
                          self.pad,
                          groups=self.channels,
                          bias=False),
                nn.BatchNorm2d(self.channels, affine=affine),
                # pw-linear
                nn.Conv2d(self.channels, self.channels, 1, 1, 0, bias=False),
                nn.BatchNorm2d(self.channels, affine=affine),
                nn.ReLU(inplace=True))
        else:
            # empty block to be compatible with torchscript
            self.branch_proj = nn.Sequential()
コード例 #12
0
 def __init__(self):
     super(LargeModel, self).__init__()
     dim = 15
     n = 4 * 100
     self.emb = nn.Embedding(n, dim)
     self.lin1 = nn.Linear(dim, 1)
     self.seq = nn.Sequential(
         self.emb,
         self.lin1,
     )
コード例 #13
0
    def __init__(self,
                 in_features,
                 out_features,
                 bias=True,
                 use_bn=False,
                 act_func=None,
                 dropout_rate=0,
                 ops_order='weight_bn_act'):
        super(LinearLayer, self).__init__()

        self.in_features = in_features
        self.out_features = out_features
        self.bias = bias

        self.use_bn = use_bn
        self.act_func = act_func
        self.dropout_rate = dropout_rate
        self.ops_order = ops_order
        """ modules """
        modules = {}
        # batch norm
        if self.use_bn:
            if self.bn_before_weight:
                modules['bn'] = nn.BatchNorm1d(in_features)
            else:
                modules['bn'] = nn.BatchNorm1d(out_features)
        else:
            modules['bn'] = None
        # activation
        modules['act'] = build_activation(self.act_func,
                                          self.ops_list[0] != 'act')
        # dropout
        if self.dropout_rate > 0:
            modules['dropout'] = nn.Dropout(self.dropout_rate, inplace=True)
        else:
            modules['dropout'] = None
        # linear
        modules['weight'] = {
            'linear': nn.Linear(self.in_features, self.out_features, self.bias)
        }

        # add modules
        for op in self.ops_list:
            if modules[op] is None:
                continue
            elif op == 'weight':
                if modules['dropout'] is not None:
                    self.add_module('dropout', modules['dropout'])
                for key in modules['weight']:
                    self.add_module(key, modules['weight'][key])
            else:
                self.add_module(op, modules[op])
        self.sequence = nn.Sequential(self._modules)
コード例 #14
0
ファイル: mobilenetv3.py プロジェクト: microsoft/nni
 def __init__(self,
              channels: int,
              reduction: int = 4,
              activation_layer: Optional[Callable[..., nn.Module]] = None):
     super().__init__()
     if activation_layer is None:
         activation_layer = nn.Sigmoid
     self.avg_pool = nn.AdaptiveAvgPool2d(1)
     self.fc = nn.Sequential(
         nn.Linear(channels, make_divisible(channels // reduction, 8)),
         nn.ReLU(inplace=True),
         nn.Linear(make_divisible(channels // reduction, 8), channels),
         activation_layer())
コード例 #15
0
 def __init__(self, input_size, C, n_classes):
     """ assuming input size 7x7 or 8x8 """
     assert input_size in [7, 8]
     super().__init__()
     self.net = nn.Sequential(
         nn.ReLU(inplace=True),
         nn.AvgPool2d(5, stride=input_size - 5, padding=0, count_include_pad=False),  # 2x2 out
         nn.Conv2d(C, 128, kernel_size=1, bias=False),
         nn.BatchNorm2d(128),
         nn.ReLU(inplace=True),
         nn.Conv2d(128, 768, kernel_size=2, bias=False),  # 1x1 out
         nn.BatchNorm2d(768),
         nn.ReLU(inplace=True)
     )
     self.linear = nn.Linear(768, n_classes)
コード例 #16
0
    def __init__(self,
                 in_channels,
                 out_channels,
                 use_bn=True,
                 act_func='relu',
                 dropout_rate=0,
                 ops_order='weight_bn_act'):
        super(Base2DLayer, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels

        self.use_bn = use_bn
        self.act_func = act_func
        self.dropout_rate = dropout_rate
        self.ops_order = ops_order
        """ modules """
        modules = {}
        # batch norm
        if self.use_bn:
            if self.bn_before_weight:
                modules['bn'] = nn.BatchNorm2d(in_channels)
            else:
                modules['bn'] = nn.BatchNorm2d(out_channels)
        else:
            modules['bn'] = None
        # activation
        modules['act'] = build_activation(self.act_func,
                                          self.ops_list[0] != 'act')
        # dropout
        if self.dropout_rate > 0:
            modules['dropout'] = nn.Dropout2d(self.dropout_rate, inplace=True)
        else:
            modules['dropout'] = None
        # weight
        modules['weight'] = self.weight_op()

        # add modules
        for op in self.ops_list:
            if modules[op] is None:
                continue
            elif op == 'weight':
                if modules['dropout'] is not None:
                    self.add_module('dropout', modules['dropout'])
                for key in modules['weight']:
                    self.add_module(key, modules['weight'][key])
            else:
                self.add_module(op, modules[op])
        self.sequence = nn.Sequential(self._modules)
コード例 #17
0
ファイル: proxylessnas.py プロジェクト: J-shang/nni
    def __init__(self, num_labels: int = 1000,
                 base_widths: Tuple[int, ...] = (32, 16, 32, 40, 80, 96, 192, 320, 1280),
                 dropout_rate: float = 0.,
                 width_mult: float = 1.0,
                 bn_eps: float = 1e-3,
                 bn_momentum: float = 0.1):

        super().__init__()

        assert len(base_widths) == 9
        # include the last stage info widths here
        widths = [make_divisible(width * width_mult, 8) for width in base_widths]
        downsamples = [True, False, True, True, True, False, True, False]

        self.num_labels = num_labels
        self.dropout_rate = dropout_rate
        self.bn_eps = bn_eps
        self.bn_momentum = bn_momentum

        self.stem = ConvBNReLU(3, widths[0], stride=2, norm_layer=nn.BatchNorm2d)

        blocks: List[nn.Module] = [
            # first stage is fixed
            DepthwiseSeparableConv(widths[0], widths[1], kernel_size=3, stride=1)
        ]

        # https://github.com/ultmaster/AceNAS/blob/46c8895fd8a05ffbc61a6b44f1e813f64b4f66b7/searchspace/proxylessnas/__init__.py#L21
        for stage in range(2, 8):
            # Rather than returning a fixed module here,
            # we return a builder that dynamically creates module for different `repeat_idx`.
            builder = inverted_residual_choice_builder(
                [3, 6], [3, 5, 7], downsamples[stage], widths[stage - 1], widths[stage], f's{stage}')
            if stage < 7:
                blocks.append(nn.Repeat(builder, (1, 4), label=f's{stage}_depth'))
            else:
                # No mutation for depth in the last stage.
                # Directly call builder to initiate one block
                blocks.append(builder(0))

        self.blocks = nn.Sequential(*blocks)

        # final layers
        self.feature_mix_layer = ConvBNReLU(widths[7], widths[8], kernel_size=1, norm_layer=nn.BatchNorm2d)
        self.global_avg_pooling = nn.AdaptiveAvgPool2d(1)
        self.dropout_layer = nn.Dropout(dropout_rate)
        self.classifier = nn.Linear(widths[-1], num_labels)

        reset_parameters(self, bn_momentum=bn_momentum, bn_eps=bn_eps)
コード例 #18
0
    def __init__(self, C: int, num_labels: int, dataset: Literal['imagenet',
                                                                 'cifar']):
        super().__init__()
        if dataset == 'imagenet':
            # assuming input size 14x14
            stride = 2
        elif dataset == 'cifar':
            stride = 3

        self.features = nn.Sequential(
            nn.ReLU(inplace=True),
            nn.AvgPool2d(5, stride=stride, padding=0, count_include_pad=False),
            nn.Conv2d(C, 128, 1, bias=False), nn.BatchNorm2d(128),
            nn.ReLU(inplace=True), nn.Conv2d(128, 768, 2, bias=False),
            nn.BatchNorm2d(768), nn.ReLU(inplace=True))
        self.classifier = nn.Linear(768, num_labels)
コード例 #19
0
 def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True):
     super().__init__()
     self.net = nn.Sequential(
         DilConv(C_in,
                 C_in,
                 kernel_size,
                 stride,
                 padding,
                 dilation=1,
                 affine=affine),
         DilConv(C_in,
                 C_out,
                 kernel_size,
                 1,
                 padding,
                 dilation=1,
                 affine=affine))
コード例 #20
0
ファイル: darts_model.py プロジェクト: zzpuser/nni
    def __init__(self,
                 input_size,
                 in_channels,
                 channels,
                 n_classes,
                 n_layers,
                 n_nodes=4,
                 stem_multiplier=3,
                 auxiliary=False):
        super().__init__()
        self.in_channels = in_channels
        self.channels = channels
        self.n_classes = n_classes
        self.n_layers = n_layers
        self.aux_pos = 2 * n_layers // 3 if auxiliary else -1

        c_cur = stem_multiplier * self.channels
        self.stem = nn.Sequential(
            nn.Conv2d(in_channels, c_cur, 3, 1, 1, bias=False),
            nn.BatchNorm2d(c_cur))

        # for the first cell, stem is used for both s0 and s1
        # [!] channels_pp and channels_p is output channel size, but c_cur is input channel size.
        channels_pp, channels_p, c_cur = c_cur, c_cur, channels

        self.cells = nn.ModuleList()
        reduction_p, reduction = False, False
        for i in range(n_layers):
            reduction_p, reduction = reduction, False
            # Reduce featuremap size and double channels in 1/3 and 2/3 layer.
            if i in [n_layers // 3, 2 * n_layers // 3]:
                c_cur *= 2
                reduction = True

            cell = Cell(n_nodes, channels_pp, channels_p, c_cur, reduction_p,
                        reduction)
            self.cells.append(cell)
            c_cur_out = c_cur * n_nodes
            channels_pp, channels_p = channels_p, c_cur_out

            #if i == self.aux_pos:
            #    self.aux_head = AuxiliaryHead(input_size // 4, channels_p, n_classes)

        self.gap = nn.AdaptiveAvgPool2d(1)
        self.linear = nn.Linear(channels_p, n_classes)
コード例 #21
0
ファイル: test_convert.py プロジェクト: zzpuser/nni
 def __init__(self, config):
     super(SNLIClassifier, self).__init__()
     self.config = config
     self.embed = nn.Embedding(config.n_embed, config.d_embed)
     self.projection = Linear(config.d_embed, config.d_proj)
     self.encoder = Encoder(config)
     self.dropout = nn.Dropout(p=config.dp_ratio)
     self.relu = nn.ReLU()
     seq_in_size = 2 * config.d_hidden
     if self.config.birnn:
         seq_in_size *= 2
     lin_config = [seq_in_size] * 2
     self.out = nn.Sequential(Linear(*lin_config), self.relu,
                              self.dropout, Linear(*lin_config),
                              self.relu, self.dropout,
                              Linear(*lin_config), self.relu,
                              self.dropout,
                              Linear(seq_in_size, config.d_out))
コード例 #22
0
 def __init__(self, config):
     super(SNLIClassifier, self).__init__()
     self.embed = nn.Embedding(config["n_embed"], config["d_embed"])
     self.projection = Linear(config["d_embed"], config["d_proj"])
     self.encoder = Encoder(config)
     self.dropout = nn.Dropout(p=config["dp_ratio"])
     self.relu = nn.ReLU()
     seq_in_size = 2 * config["d_hidden"]
     if config["birnn"]:
         seq_in_size *= 2
     lin_config = [seq_in_size] * 2
     self.out = nn.Sequential(Linear(*lin_config), self.relu,
                              self.dropout, Linear(*lin_config),
                              self.relu, self.dropout,
                              Linear(*lin_config), self.relu,
                              self.dropout,
                              Linear(seq_in_size, config["d_out"]))
     self.fix_emb = config["fix_emb"]
     self.project = config["projection"]
コード例 #23
0
 def __init__(self,
              C_in,
              C_out,
              kernel_length,
              stride,
              padding,
              affine=True):
     super(FacConv, self).__init__()
     self.net = nn.Sequential(
         nn.ReLU(),
         nn.Conv2d(C_in,
                   C_in, (kernel_length, 1),
                   stride,
                   padding,
                   bias=False),
         nn.Conv2d(C_in,
                   C_out, (1, kernel_length),
                   stride,
                   padding,
                   bias=False), nn.BatchNorm2d(C_out, affine=affine))
コード例 #24
0
 def __init__(self, nc, ndf):
     super(DCGANDiscriminator, self).__init__()
     self.main = nn.Sequential(
         # input is (nc) x 64 x 64
         nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
         nn.LeakyReLU(0.2, inplace=True),
         # state size. (ndf) x 32 x 32
         nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
         nn.BatchNorm2d(ndf * 2),
         nn.LeakyReLU(0.2, inplace=True),
         # state size. (ndf*2) x 16 x 16
         nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
         nn.BatchNorm2d(ndf * 4),
         nn.LeakyReLU(0.2, inplace=True),
         # state size. (ndf*4) x 8 x 8
         nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
         nn.BatchNorm2d(ndf * 8),
         nn.LeakyReLU(0.2, inplace=True),
         # state size. (ndf*8) x 4 x 4
         nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
         nn.Sigmoid())
コード例 #25
0
 def __init__(self, nz, ngf, nc):
     super(DCGANGenerator, self).__init__()
     self.main = nn.Sequential(
         # input is Z, going into a convolution
         nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),
         nn.BatchNorm2d(ngf * 8),
         nn.ReLU(True),
         # state size. (ngf*8) x 4 x 4
         nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
         nn.BatchNorm2d(ngf * 4),
         nn.ReLU(True),
         # state size. (ngf*4) x 8 x 8
         nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
         nn.BatchNorm2d(ngf * 2),
         nn.ReLU(True),
         # state size. (ngf*2) x 16 x 16
         nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
         nn.BatchNorm2d(ngf),
         nn.ReLU(True),
         # state size. (ngf) x 32 x 32
         nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
         nn.Tanh()
         # state size. (nc) x 64 x 64
     )
コード例 #26
0
    def __init__(self,
                 op_candidates: List[str],
                 merge_op: Literal['all', 'loose_end'] = 'all',
                 num_nodes_per_cell: int = 4,
                 width: Union[Tuple[int, ...], int] = 16,
                 num_cells: Union[Tuple[int, ...], int] = 20,
                 dataset: Literal['cifar', 'imagenet'] = 'imagenet',
                 auxiliary_loss: bool = False):
        super().__init__()

        self.dataset = dataset
        self.num_labels = 10 if dataset == 'cifar' else 1000
        self.auxiliary_loss = auxiliary_loss

        # preprocess the specified width and depth
        if isinstance(width, Iterable):
            C = nn.ValueChoice(list(width), label='width')
        else:
            C = width

        self.num_cells: nn.MaybeChoice[int] = cast(int, num_cells)
        if isinstance(num_cells, Iterable):
            self.num_cells = nn.ValueChoice(list(num_cells), label='depth')
        num_cells_per_stage = [
            (i + 1) * self.num_cells // 3 - i * self.num_cells // 3
            for i in range(3)
        ]

        # auxiliary head is different for network targetted at different datasets
        if dataset == 'imagenet':
            self.stem0 = nn.Sequential(
                nn.Conv2d(3,
                          cast(int, C // 2),
                          kernel_size=3,
                          stride=2,
                          padding=1,
                          bias=False),
                nn.BatchNorm2d(cast(int, C // 2)),
                nn.ReLU(inplace=True),
                nn.Conv2d(cast(int, C // 2),
                          cast(int, C),
                          3,
                          stride=2,
                          padding=1,
                          bias=False),
                nn.BatchNorm2d(C),
            )
            self.stem1 = nn.Sequential(
                nn.ReLU(inplace=True),
                nn.Conv2d(cast(int, C),
                          cast(int, C),
                          3,
                          stride=2,
                          padding=1,
                          bias=False),
                nn.BatchNorm2d(C),
            )
            C_pprev = C_prev = C_curr = C
            last_cell_reduce = True
        elif dataset == 'cifar':
            self.stem = nn.Sequential(
                nn.Conv2d(3, cast(int, 3 * C), 3, padding=1, bias=False),
                nn.BatchNorm2d(cast(int, 3 * C)))
            C_pprev = C_prev = 3 * C
            C_curr = C
            last_cell_reduce = False
        else:
            raise ValueError(f'Unsupported dataset: {dataset}')

        self.stages = nn.ModuleList()
        for stage_idx in range(3):
            if stage_idx > 0:
                C_curr *= 2
            # For a stage, we get C_in, C_curr, and C_out.
            # C_in is only used in the first cell.
            # C_curr is number of channels for each operator in current stage.
            # C_out is usually `C * num_nodes_per_cell` because of concat operator.
            cell_builder = CellBuilder(op_candidates, C_pprev, C_prev, C_curr,
                                       num_nodes_per_cell, merge_op,
                                       stage_idx > 0, last_cell_reduce)
            stage: Union[NDSStage, nn.Sequential] = NDSStage(
                cell_builder, num_cells_per_stage[stage_idx])

            if isinstance(stage, NDSStage):
                stage.estimated_out_channels_prev = cast(int, C_prev)
                stage.estimated_out_channels = cast(
                    int, C_curr * num_nodes_per_cell)
                stage.downsampling = stage_idx > 0

            self.stages.append(stage)

            # NOTE: output_node_indices will be computed on-the-fly in trial code.
            # When constructing model space, it's just all the nodes in the cell,
            # which happens to be the case of one-shot supernet.

            # C_pprev is output channel number of last second cell among all the cells already built.
            if len(stage) > 1:
                # Contains more than one cell
                C_pprev = len(cast(nn.Cell,
                                   stage[-2]).output_node_indices) * C_curr
            else:
                # Look up in the out channels of last stage.
                C_pprev = C_prev

            # This was originally,
            # C_prev = num_nodes_per_cell * C_curr.
            # but due to loose end, it becomes,
            C_prev = len(cast(nn.Cell, stage[-1]).output_node_indices) * C_curr

            # Useful in aligning the pprev and prev cell.
            last_cell_reduce = cell_builder.last_cell_reduce

            if stage_idx == 2:
                C_to_auxiliary = C_prev

        if auxiliary_loss:
            assert isinstance(
                self.stages[2], nn.Sequential
            ), 'Auxiliary loss can only be enabled in retrain mode.'
            self.stages[2] = SequentialBreakdown(
                cast(nn.Sequential, self.stages[2]))
            self.auxiliary_head = AuxiliaryHead(
                C_to_auxiliary, self.num_labels,
                dataset=self.dataset)  # type: ignore

        self.global_pooling = nn.AdaptiveAvgPool2d((1, 1))
        self.classifier = nn.Linear(cast(int, C_prev), self.num_labels)
コード例 #27
0
    def __init__(self,
                 op_candidates: List[str],
                 merge_op: Literal['all', 'loose_end'] = 'all',
                 num_nodes_per_cell: int = 4,
                 width: Union[Tuple[int], int] = 16,
                 num_cells: Union[Tuple[int], int] = 20,
                 dataset: Literal['cifar', 'imagenet'] = 'imagenet',
                 auxiliary_loss: bool = False):
        super().__init__()

        self.dataset = dataset
        self.num_labels = 10 if dataset == 'cifar' else 1000
        self.auxiliary_loss = auxiliary_loss

        # preprocess the specified width and depth
        if isinstance(width, Iterable):
            C = nn.ValueChoice(list(width), label='width')
        else:
            C = width

        if isinstance(num_cells, Iterable):
            num_cells = nn.ValueChoice(list(num_cells), label='depth')
        num_cells_per_stage = [
            i * num_cells // 3 - (i - 1) * num_cells // 3 for i in range(3)
        ]

        # auxiliary head is different for network targetted at different datasets
        if dataset == 'imagenet':
            self.stem0 = nn.Sequential(
                nn.Conv2d(3,
                          C // 2,
                          kernel_size=3,
                          stride=2,
                          padding=1,
                          bias=False),
                nn.BatchNorm2d(C // 2),
                nn.ReLU(inplace=True),
                nn.Conv2d(C // 2, C, 3, stride=2, padding=1, bias=False),
                nn.BatchNorm2d(C),
            )
            self.stem1 = nn.Sequential(
                nn.ReLU(inplace=True),
                nn.Conv2d(C, C, 3, stride=2, padding=1, bias=False),
                nn.BatchNorm2d(C),
            )
            C_pprev = C_prev = C_curr = C
            last_cell_reduce = True
        elif dataset == 'cifar':
            self.stem = nn.Sequential(
                nn.Conv2d(3, 3 * C, 3, padding=1, bias=False),
                nn.BatchNorm2d(3 * C))
            C_pprev = C_prev = 3 * C
            C_curr = C
            last_cell_reduce = False

        self.stages = nn.ModuleList()
        for stage_idx in range(3):
            if stage_idx > 0:
                C_curr *= 2
            # For a stage, we get C_in, C_curr, and C_out.
            # C_in is only used in the first cell.
            # C_curr is number of channels for each operator in current stage.
            # C_out is usually `C * num_nodes_per_cell` because of concat operator.
            cell_builder = CellBuilder(op_candidates, C_pprev, C_prev, C_curr,
                                       num_nodes_per_cell, merge_op,
                                       stage_idx > 0, last_cell_reduce)
            stage = nn.Repeat(cell_builder, num_cells_per_stage[stage_idx])
            self.stages.append(stage)

            # C_pprev is output channel number of last second cell among all the cells already built.
            if len(stage) > 1:
                # Contains more than one cell
                C_pprev = len(stage[-2].output_node_indices) * C_curr
            else:
                # Look up in the out channels of last stage.
                C_pprev = C_prev

            # This was originally,
            # C_prev = num_nodes_per_cell * C_curr.
            # but due to loose end, it becomes,
            C_prev = len(stage[-1].output_node_indices) * C_curr

            # Useful in aligning the pprev and prev cell.
            last_cell_reduce = cell_builder.last_cell_reduce

            if stage_idx == 2:
                C_to_auxiliary = C_prev

        if auxiliary_loss:
            assert isinstance(
                self.stages[2], nn.Sequential
            ), 'Auxiliary loss can only be enabled in retrain mode.'
            self.stages[2] = SequentialBreakdown(self.stages[2])
            self.auxiliary_head = AuxiliaryHead(C_to_auxiliary,
                                                self.num_labels,
                                                dataset=self.dataset)

        self.global_pooling = nn.AdaptiveAvgPool2d((1, 1))
        self.classifier = nn.Linear(C_prev, self.num_labels)
コード例 #28
0
 lambda C, stride, affine: nn.AvgPool2d(
     5, stride=stride, padding=2, count_include_pad=False),
 'max_pool_2x2':
 lambda C, stride, affine: nn.MaxPool2d(2, stride=stride, padding=0),
 'max_pool_3x3':
 lambda C, stride, affine: nn.MaxPool2d(3, stride=stride, padding=1),
 'max_pool_5x5':
 lambda C, stride, affine: nn.MaxPool2d(5, stride=stride, padding=2),
 'max_pool_7x7':
 lambda C, stride, affine: nn.MaxPool2d(7, stride=stride, padding=3),
 'skip_connect':
 lambda C, stride, affine: nn.Identity()
 if stride == 1 else FactorizedReduce(C, C, affine=affine),
 'conv_1x1':
 lambda C, stride, affine: nn.Sequential(
     nn.ReLU(inplace=False),
     nn.Conv2d(C, C, 1, stride=stride, padding=0, bias=False),
     nn.BatchNorm2d(C, affine=affine)),
 'conv_3x3':
 lambda C, stride, affine: nn.Sequential(
     nn.ReLU(inplace=False),
     nn.Conv2d(C, C, 3, stride=stride, padding=1, bias=False),
     nn.BatchNorm2d(C, affine=affine)),
 'sep_conv_3x3':
 lambda C, stride, affine: SepConv(C, C, 3, stride, 1, affine=affine),
 'sep_conv_5x5':
 lambda C, stride, affine: SepConv(C, C, 5, stride, 2, affine=affine),
 'sep_conv_7x7':
 lambda C, stride, affine: SepConv(C, C, 7, stride, 3, affine=affine),
 'dil_conv_3x3':
 lambda C, stride, affine: DilConv(C, C, 3, stride, 2, 2, affine=affine),
 'dil_conv_5x5':
コード例 #29
0
ファイル: mobilenetv3.py プロジェクト: microsoft/nni
    def __init__(self,
                 num_labels: int = 1000,
                 base_widths: Tuple[int, ...] = (16, 16, 32, 64, 128, 256, 512,
                                                 1024),
                 width_multipliers: Tuple[float, ...] = (0.5, 0.625, 0.75, 1.0,
                                                         1.25, 1.5, 2.0),
                 expand_ratios: Tuple[int, ...] = (1, 2, 3, 4, 5, 6),
                 dropout_rate: float = 0.2,
                 bn_eps: float = 1e-3,
                 bn_momentum: float = 0.1):
        super().__init__()

        self.widths = [
            nn.ValueChoice([
                make_divisible(base_width * mult, 8)
                for mult in width_multipliers
            ],
                           label=f'width_{i}')
            for i, base_width in enumerate(base_widths)
        ]
        self.expand_ratios = expand_ratios

        blocks = [
            # Stem
            ConvBNReLU(3,
                       self.widths[0],
                       nn.ValueChoice([3, 5], label='ks_0'),
                       stride=2,
                       activation_layer=h_swish),
            SeparableConv(self.widths[0],
                          self.widths[0],
                          activation_layer=nn.ReLU),
        ]

        # counting for kernel sizes and expand ratios
        self.layer_count = 2

        blocks += [
            # Body
            self._make_stage(1, self.widths[0], self.widths[1], False, 2,
                             nn.ReLU),
            self._make_stage(2, self.widths[1], self.widths[2], True, 2,
                             nn.ReLU),
            self._make_stage(1, self.widths[2], self.widths[3], False, 2,
                             h_swish),
            self._make_stage(1, self.widths[3], self.widths[4], True, 1,
                             h_swish),
            self._make_stage(1, self.widths[4], self.widths[5], True, 2,
                             h_swish),
        ]

        # Head
        blocks += [
            ConvBNReLU(self.widths[5],
                       self.widths[6],
                       1,
                       1,
                       activation_layer=h_swish),
            nn.AdaptiveAvgPool2d(1),
            ConvBNReLU(self.widths[6],
                       self.widths[7],
                       1,
                       1,
                       norm_layer=nn.Identity,
                       activation_layer=h_swish),
        ]

        self.blocks = nn.Sequential(*blocks)

        self.classifier = nn.Sequential(
            nn.Dropout(dropout_rate),
            nn.Linear(self.widths[7], num_labels),
        )

        reset_parameters(self, bn_momentum=bn_momentum, bn_eps=bn_eps)
コード例 #30
0
ファイル: shufflenet.py プロジェクト: microsoft/nni
    def __init__(self,
                 num_labels: int = 1000,
                 channel_search: bool = False,
                 affine: bool = False):
        super().__init__()

        self.num_labels = num_labels
        self.channel_search = channel_search
        self.affine = affine

        # the block number in each stage. 4 stages in total. 20 blocks in total.
        self.stage_repeats = [4, 4, 8, 4]

        # output channels for all stages, including the very first layer and the very last layer
        self.stage_out_channels = [-1, 16, 64, 160, 320, 640, 1024]

        # building first layer
        out_channels = self.stage_out_channels[1]
        self.first_conv = nn.Sequential(
            nn.Conv2d(3, out_channels, 3, 2, 1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True),
        )

        self.features = []

        global_block_idx = 0
        for stage_idx, num_repeat in enumerate(self.stage_repeats):
            for block_idx in range(num_repeat):
                # count global index to give names to choices
                global_block_idx += 1

                # get ready for input and output
                in_channels = out_channels
                out_channels = self.stage_out_channels[stage_idx + 2]
                stride = 2 if block_idx == 0 else 1

                # mid channels can be searched
                base_mid_channels = out_channels // 2
                if self.channel_search:
                    k_choice_list = [
                        int(base_mid_channels * (.2 * k)) for k in range(1, 9)
                    ]
                    mid_channels = nn.ValueChoice(
                        k_choice_list, label=f'channel_{global_block_idx}')
                else:
                    mid_channels = int(base_mid_channels)

                choice_block = nn.LayerChoice(
                    [
                        ShuffleNetBlock(in_channels,
                                        out_channels,
                                        mid_channels=mid_channels,
                                        kernel_size=3,
                                        stride=stride,
                                        affine=affine),
                        ShuffleNetBlock(in_channels,
                                        out_channels,
                                        mid_channels=mid_channels,
                                        kernel_size=5,
                                        stride=stride,
                                        affine=affine),
                        ShuffleNetBlock(in_channels,
                                        out_channels,
                                        mid_channels=mid_channels,
                                        kernel_size=7,
                                        stride=stride,
                                        affine=affine),
                        ShuffleXceptionBlock(in_channels,
                                             out_channels,
                                             mid_channels=mid_channels,
                                             stride=stride,
                                             affine=affine)
                    ],
                    label=f'layer_{global_block_idx}')
                self.features.append(choice_block)

        self.features = nn.Sequential(*self.features)

        # final layers
        last_conv_channels = self.stage_out_channels[-1]
        self.conv_last = nn.Sequential(
            nn.Conv2d(out_channels, last_conv_channels, 1, 1, 0, bias=False),
            nn.BatchNorm2d(last_conv_channels, affine=affine),
            nn.ReLU(inplace=True),
        )
        self.globalpool = nn.AdaptiveAvgPool2d((1, 1))
        self.dropout = nn.Dropout(0.1)
        self.classifier = nn.Sequential(
            nn.Linear(last_conv_channels, num_labels, bias=False), )

        self._initialize_weights()