コード例 #1
0
def test_preemphasis():
    for dtype in [np.float32, np.float64]:
        np.random.seed(1234)
        x = np.random.rand(16000 * 5).astype(dtype)
        y = preemphasis(x, 0.97)
        assert x.shape == y.shape
        assert x.dtype == y.dtype
        x_hat = inv_preemphasis(y, 0.97)
        assert x_hat.dtype == x.dtype
        assert np.allclose(x_hat, x, atol=1e-5)

    x = np.random.rand(16000)
    assert np.allclose(P.preemphasis(x, 0), x)
    assert np.allclose(P.inv_preemphasis(P.preemphasis(x, 0), 0), x)
コード例 #2
0
ファイル: audio.py プロジェクト: G-Wang/wavenet
def preemphasis(x):
    # allow disable preemphasis
    if hparams.preemphasis == -1.0:
        return x
    else:
        from nnmnkwii.preprocessing import preemphasis
        return preemphasis(x, hparams.preemphasis)
コード例 #3
0
def melspectrogram(y, ref_level_db, allow_clipping_in_normalization,
                   min_level_db):
    D = _lws_processor().stft(preemphasis(y)).T
    S = _amp_to_db(_linear_to_mel(np.abs(D))) - ref_level_db
    if not allow_clipping_in_normalization:
        assert S.max() <= 0 and S.min() - min_level_db >= 0
    return _normalize(S)
コード例 #4
0
def wave2spec(
        wave, fs, frame_period, window,
        nperseg=None, nmels=80, preemphasis_coef=None,
        f_min=0, f_max=None, dtype='float32',
        return_t=False):

    stft_kwargs = make_stft_args(
        frame_period, fs, nperseg=nperseg, window=window)
    htk, norm = True, "slaney"

    if preemphasis_coef is not None:
        spec_wave = preemphasis(wave, preemphasis_coef)
    else:
        spec_wave = wave
    _, t, Zxx = signal.stft(
        spec_wave, **stft_kwargs)
    pspec = np.abs(Zxx)
    mspec = melspectrogram(
        sr=fs, S=pspec,
        n_mels=nmels, fmin=f_min, fmax=f_max,
        power=1.0, htk=htk, norm=norm)
    pspec = pspec.T.astype(dtype)
    mspec = mspec.T.astype(dtype)
    upsample = fs // (1000 // frame_period)
    length = (len(wave) // upsample) * upsample
    wave = wave[:length]
    mspec = mspec[:length // upsample]
    spec = pspec[:length // upsample]

    if return_t:
        return wave, spec, mspec, upsample, t
    else:
        return wave, spec, mspec, upsample
コード例 #5
0
def spectrogram(y):
    D = librosa.stft(preemphasis(y),
                     n_fft=hparams.fft_size,
                     hop_length=hparams.hop_size,
                     win_length=hparams.fft_wsize)
    S = _amp_to_db(np.abs(D)) - hparams.spec_ref_level_db
    #S = librosa.amplitude_to_db(np.abs(D)) - hparams.spec_ref_level_db
    return _normalize(S)
コード例 #6
0
def melspectrogram(y):
    D = librosa.stft(preemphasis(y),
                     n_fft=hparams.fft_size,
                     hop_length=hparams.hop_size,
                     win_length=hparams.fft_wsize)
    S = _amp_to_db(_linear_to_mel(np.abs(D))) - hparams.spec_ref_level_db
    #S = librosa.amplitude_to_db(_linear_to_mel(np.abs(D))) - hparams.spec_ref_level_db
    if not hparams.allow_clipping_in_normalization:
        assert S.max() <= 0 and S.min() - hparams.min_level_db >= 0
    return _normalize(S)
コード例 #7
0
ファイル: audio.py プロジェクト: twiet/wavernn
def melspectrogram(y):
    a = preemphasis(y)

    # stft fails if len(a.shape) != 1, not sure how it got there
    if len(a.shape) != 1:
        a = np.squeeze(a)
    D = _lws_processor().stft(a).T
    S = _amp_to_db(_linear_to_mel(np.abs(D))) - hparams.ref_level_db
    if not hparams.allow_clipping_in_normalization:
        assert S.max() <= 0 and S.min() - hparams.min_level_db >= 0
    return _normalize(S)
コード例 #8
0
def spectrogram(y, power, pcen=False):
    global _mel_freqs
    stftS = librosa.stft(y,
                         n_fft=hparams.fft_size,
                         hop_length=hparams.hop_size)
    if hparams.use_preemphasis:
        y = preemphasis(y)
    S = librosa.stft(y, n_fft=hparams.fft_size, hop_length=hparams.hop_size)
    if _mel_freqs is None:
        _mel_freqs = librosa.mel_frequencies(S.shape[0], fmin=hparams.fmin)
    _S = librosa.perceptual_weighting(np.abs(S)**power,
                                      _mel_freqs,
                                      ref=hparams.ref_level_db)
    return _normalize(_S - hparams.ref_level_db), stftS
コード例 #9
0
ファイル: audio.py プロジェクト: templeblock/WaveRNN-Pytorch
def melspectrogram(y):
    D = _stft(preemphasis(y))
    S = _amp_to_db(_linear_to_mel(np.abs(D)**hparams.magnitude_power)) - hparams.ref_level_db
    if not hparams.allow_clipping_in_normalization:
        assert S.max() <= 0 and S.min() - hparams.min_level_db >= 0
    return _normalize(S)
コード例 #10
0
ファイル: audio.py プロジェクト: xzm2004085/WaveRNN-Pytorch
def melspectrogram(y):
    D = _stft(preemphasis(y))
    S = _amp_to_db(_linear_to_mel(np.abs(D))) - hparams.ref_level_db
    return _normalize(S)
コード例 #11
0
ファイル: audio.py プロジェクト: KevinHua/wavenet_vocoder
def preemphasis(x, coef=0.85):
    return P.preemphasis(x, coef)
コード例 #12
0
ファイル: analyzer.py プロジェクト: chj1330/homework
def preemphasis(x):
    from nnmnkwii.preprocessing import preemphasis
    return preemphasis(x, preemphasis_factor)
コード例 #13
0
ファイル: audio.py プロジェクト: lucasmelloec/EbookReader
def melspectrogram(y):
    D = _lws_processor().stft(preemphasis(y)).T
    S = _amp_to_db(_linear_to_mel(np.abs(D)))
    return _normalize(S)
コード例 #14
0
def stft(y, preemp=False):
    if preemp:
        y = preemphasis(y)
    return librosa.stft(y, n_fft=hparams.fft_size, hop_length=hparams.hop_size)
コード例 #15
0
def preemphasis(x):
    from nnmnkwii.preprocessing import preemphasis
    return preemphasis(x, hparams.preemphasis)
コード例 #16
0
def spectrogram(y):
    D = _lws_processor().stft(preemphasis(y)).T
    S = _amp_to_db(np.abs(D)) - hparams.ref_level_db
    return _normalize(S)
コード例 #17
0
 def _preemphasis(self, x):
     from nnmnkwii.preprocessing import preemphasis
     return preemphasis(x, self.hparams.preemphasis)