コード例 #1
0
ファイル: testss.py プロジェクト: CyanHillFox/tvm
def test_batch_norm():
    input_shape = (1, 4, 4, 16)
    target_host = "llvm"
    device = "nnpu"
    target = tvm.target.create("llvm -device={}".format(device))
    inputs1 = nnvm.symbol.Variable("inputs1")
    inputs2 = nnvm.symbol.Variable("inputs2")
    z1 = nnvm.symbol.relu(inputs1)
    # z2 = nnvm.symbol.relu(z1)
    compute_graph = nnvm.graph.create(z1)
        
    with nnvm.compiler.build_config(opt_level=0):
        if target.device_name != "nnpu":

                deploy_graph, lib, params = nnvm.compiler.build(compute_graph, target, shape = 
                                        {"inputs1" : input_shape}, dtype = "float32", target_host = target_host)
        else:
            with ScheduleProcHelper():
                with nnpu.build_config():
                    nnpu.set_device(nnpu.get_env(), type = 'S0')
                    deploy_graph, lib, params = nnvm.compiler.build(compute_graph, target, shape = 
                                        {"inputs1" : input_shape}, dtype = "float32", target_host = target_host)

        ctx = tvm.context(str("nnpu"), 0) if device == "nnpu" else tvm.context(str("llvm"), 0)
        module = runtime.create(deploy_graph, lib, ctx)
        a_np = np.random.uniform(size  = (1, 4, 4, 16), low = -32, high = 32).astype(np.float32)
        b_np = np.random.uniform(size  = (1, 16), low = -32, high = 32).astype(np.float32)
        print(a_np)
        module.set_input(inputs1 = a_np)
        module.run()
        out = module.get_output(0, out = tvm.nd.empty((1, 4, 4, 16)))
        print(out.asnumpy)
        print(compute_graph.ir())
        print(deploy_graph.ir())
コード例 #2
0
def test_dense():
    shape = (16, 1024)
    weight_shape = (256, 1024)
    bias_shape = (256, )
    inputs = nnvm.symbol.Variable("inputs")
    weights = nnvm.symbol.Variable("weights")
    bias = nnvm.symbol.Variable("bias")
    env = nnpu.get_env()
    target_host = "llvm"
    device = "nnpu"
    target = tvm.target.create("llvm -device={}".format(device))
    z = nnvm.symbol.dense(data=inputs, weight=weights, use_bias=0, units=256)
    z1 = nnvm.symbol.relu(z)
    compute_graph = nnvm.graph.create(z1)
    with nnvm.compiler.build_config(opt_level=1):
        if target.device_name != "nnpu":
            deploy_graph, lib, params = nnvm.compiler.build(
                compute_graph,
                target,
                shape={
                    "inputs": shape,
                    "weights": weight_shape
                },
                dtype="float32",
                target_host=target_host)
        else:
            with ScheduleProcHelper():
                with nnpu.build_config():
                    nnpu.set_device(nnpu.get_env(), type='SC')
                    deploy_graph, lib, params = nnvm.compiler.build(
                        compute_graph,
                        target,
                        shape={
                            "inputs": shape,
                            "weights": weight_shape
                        },
                        dtype="float32",
                        target_host=target_host)
        ctx = tvm.context(str("nnpu"), 0) if device == "nnpu" else tvm.context(
            str("llvm"), 0)
        m = runtime.create(deploy_graph, lib, ctx)
        a_np = np.random.random(size=shape)
        b_np = np.random.random(size=weight_shape)

        m.set_input(**{"inputs": a_np, "weights": b_np})
        m.run()
        gt = a_np.dot(b_np.transpose())

        out = m.get_output(0, out=tvm.nd.empty((16, 256)))
        np.testing.assert_allclose(out.asnumpy(), gt, rtol=5e-5)
        print("tests")
        print(out)
        print(compute_graph.ir())
        print(deploy_graph.ir())
コード例 #3
0
def test_conv2d():
    input_shape = (1, 16, 10, 64)
    target_host = "llvm"
    device = "nnpu"
    target = tvm.target.create("llvm -device={}".format(device))
    inputs = nnvm.symbol.Variable("inputs")
    inputs1 = nnvm.symbol.Variable("inputs1")
    z1 = nnvm.symbol.conv2d(data=inputs,
                            channels=64,
                            kernel_size=(3, 3),
                            padding=(0, 0),
                            use_bias=False,
                            layout='NHWC',
                            kernel_layout='HWOI')
    z2 = nnvm.symbol.sigmoid(z1)
    z = nnvm.symbol.elemwise_add(z2, inputs1)

    compute_graph = nnvm.graph.create(z)

    with nnvm.compiler.build_config(opt_level=1):
        if target.device_name != "nnpu":

            deploy_graph, lib, params = nnvm.compiler.build(
                compute_graph,
                target,
                shape={
                    "inputs": input_shape,
                    "inputs1": (1, 14, 8, 64)
                },
                dtype="float32",
                target_host=target_host)
        else:
            with ScheduleProcHelper():
                with nnpu.build_config():
                    nnpu.set_device(nnpu.get_env(), type='SC')
                    deploy_graph, lib, params = nnvm.compiler.build(
                        compute_graph,
                        target,
                        shape={"inputs": input_shape},
                        dtype="float32",
                        target_host=target_host)

        ctx = tvm.context(str("nnpu"), 0) if device == "nnpu" else tvm.context(
            str("llvm"), 0)
        module = runtime.create(deploy_graph, lib, ctx)
        a_np = np.random.uniform(size=input_shape, low=-32,
                                 high=32).astype(np.float32)
        b_np = np.random.uniform(size=(1, 14, 8, 64), low=-32,
                                 high=32).astype(np.float32)
        module.set_input(inputs=a_np)
        module.run()
        print(deploy_graph.ir())
        out = module.get_output(0, out=tvm.nd.empty((1, 14, 8, 64)))
コード例 #4
0
def test_elemwise_mul():
    env = nnpu.get_env()
    device = "nnpu"
    target_host = "llvm"
    target = tvm.target.create("llvm -device={}".format(device))
    inputs1 = nnvm.symbol.Variable("inputs1")
    inputs2 = nnvm.symbol.Variable("inputs2")
    shape = (16, 6, 16)
    z = nnvm.symbol.elemwise_mul(inputs1, inputs2)
    compute_graph = nnvm.graph.create(z)
    with nnvm.compiler.build_config(opt_level=0):
        if target.device_name != "nnpu":
            deploy_graph, lib, params = nnvm.compiler.build(
                compute_graph,
                target,
                shape={
                    "inputs1": shape,
                    "inputs2": shape
                },
                dtype="float32",
                target_host=target_host)
        else:
            with ScheduleProcHelper():
                with nnpu.build_config():
                    nnpu.set_device(nnpu.get_env(), type='S0')
                    deploy_graph, lib, params = nnvm.compiler.build(
                        compute_graph,
                        target,
                        shape={
                            "inputs1": shape,
                            "inputs2": shape
                        },
                        dtype="float32",
                        target_host=target_host)
        ctx = tvm.context(str("nnpu"), 0) if device == "nnpu" else tvm.context(
            str("llvm"), 0)
        m = runtime.create(deploy_graph, lib, ctx)
        a_np = np.random.random((16, 6, 16))
        b_np = np.random.random((16, 6, 16))
        print("a_np : ")
        print(a_np)
        print("b_np : ")
        print(b_np)
        m.set_input(**{"inputs1": a_np, "inputs2": b_np})
        gt = (a_np.astype("float32") *
              b_np.astype("float32")).astype("float32")
        m.run()
        out = m.get_output(0, out=tvm.nd.empty((16, 6, 16)))
        np.testing.assert_allclose(out.asnumpy(), gt)
        print("elemwise_mul tests success")
        print(out)
コード例 #5
0
ファイル: test_s_v_r.py プロジェクト: CyanHillFox/tvm
def test():
    env = nnpu.get_env()
    nnpu.set_device(env)
    shape = (16, )
    bigshape = (4, 64)
    dtype_n, dtype_w = env.cfg['dtype_n'], env.cfg['dtype_w']

    sph = ScheduleProcHelper()

    a = tvm.placeholder(bigshape, dtype_n, 'a')
    a_buf, a_dram = nnpu.utils.CopyHtoBuf(a, 'a', sph)

    str_op = 'VAddMerge'
    k = tvm.reduce_axis((0, 4), 'k')
    c_buf = tvm.compute((64, ), lambda i: tvm.sum(a_buf[k, i], axis=k),
                        'c_buf')

    sph.MarkScope(c_buf)
    c_host, c_dram = nnpu.utils.CopyBufToH(c_buf, 'c', sph)

    s = tvm.create_schedule(c_host.op)
    sph.Transform(s)
    #tensorize
    ko, ki = s[c_buf].split(c_buf.op.reduce_axis[0], factor=1)
    xo, xi = s[c_buf].split(c_buf.op.axis[0], factor=shape[0])
    s[c_buf].reorder(xo, ko, ki, xi)
    #s[c_buf].tensorize(ki, env.intrins.get(str_op,  mode='n'))

    print(nnpu.lower(s, [a, c_host], simple_mode=True))
    exit()
    func = nnpu.build(s, [a, c_host], 'nnpu', 'llvm', name='nnpu_func')

    ctx = tvm.nd.TVMContext(13, 0)
    a_np = np.random.randint(size=bigshape, dtype=a.dtype, low=-4, high=4)
    a_nd = tvm.nd.array(a_np, ctx)

    c_nd = tvm.nd.array(np.zeros((64, ), dtype=c_host.dtype), ctx)

    func(a_nd, c_nd)
    print(str_op)
    print(c_nd.asnumpy())
    gt = np.sum(a_np, axis=0, dtype=dtype_w)
    print('ground truth=')
    print(gt)
    np.testing.assert_allclose(c_nd.asnumpy(), gt)
コード例 #6
0
def test_max_pool2d():

    device = "nnpu"
    target = tvm.target.create("llvm -device={}".format(device))
    target_host = "llvm"
    inputs = nnvm.symbol.Variable("inputs")
    shape = (1, 224, 224, 16)
    kernels = nnvm.symbol.Variable("kernels")
    kernel_shape = (2, 2)
    z = nnvm.symbol.avg_pool2d(inputs,
                               pool_size=(2, 2),
                               strides=(1, 1),
                               layout="NHWC")
    compute_graph = nnvm.graph.create(z)
    with nnvm.compiler.build_config(opt_level=0):
        if target.device_name != "nnpu":
            deploy_graph, lib, params = nnvm.compiler.build(
                compute_graph,
                target,
                shape={"inputs": shape},
                dtype="float32")
        else:
            with ScheduleProcHelper():
                with nnpu.build_config():
                    nnpu.set_device(nnpu.get_env(), type='S0')
                    deploy_graph, lib, params = nnvm.compiler.build(
                        compute_graph,
                        target,
                        shape={"inputs": shape},
                        dtype="float32")
        ctx = tvm.context(str("nnpu"), 0) if device == "nnpu" else tvm.context(
            str("llvm"), 0)
        m = runtime.create(deploy_graph, lib, ctx)
        a_np = np.random.random(size=(1, 224, 224, 16))
        m.set_input(**{"inputs": a_np})
        m.run()

        out = m.get_output(0, out=tvm.nd.empty((1, 223, 223, 16)))
        gt = avg_pooling((1, 224, 224, 16), (1, 223, 223, 16), (2, 2), a_np,
                         (1, 1), "float32")
        np.testing.assert_allclose(out.asnumpy(), gt, rtol=5e-7)
        print("max_pool2d tests success")
        print(gt)
        print(out)
        print("end")
コード例 #7
0
def test_log():
    env = nnpu.get_env()
    shape = (1, 22, 22, 16)
    device = "nnpu"
    target_host = "llvm"
    target = tvm.target.create("llvm -device={}".format(device))
    inputs = nnvm.symbol.Variable("inputs")
    z = nnvm.symbol.log(inputs)
    z1 = nnvm.symbol.exp(z)
    compute_graph = nnvm.graph.create(z1)
    with nnvm.compiler.build_config(opt_level=1):
        if target.device_name != "nnpu":
            deploy_graph, lib, params = nnvm.compiler.build(
                compute_graph,
                target,
                shape={"inputs": shape},
                dtype="float32",
                target_host=target_host)
        else:
            with ScheduleProcHelper():
                with nnpu.build_config():
                    nnpu.set_device(nnpu.get_env(), type='S0')
                    deploy_graph, lib, params = nnvm.compiler.build(
                        compute_graph,
                        target,
                        shape={"inputs": shape},
                        dtype="float32",
                        target_host=target_host)
        ctx = tvm.context(str("nnpu"), 0) if device == "nnpu" else tvm.context(
            str("llvm"), 0)
        m = runtime.create(deploy_graph, lib, ctx)
        a_np = np.random.random(shape)
        print(a_np)
        m.set_input(**{"inputs": a_np})
        m.run()
        out = m.get_output(0, out=tvm.nd.empty(shape))
        gt = np.exp(np.log(
            a_np.astype("float32")).astype("float32")).astype("float32")
        print(out)
        np.testing.assert_allclose(out.asnumpy(), gt)
        print("log tests success")
        print(compute_graph.ir())
        print(deploy_graph.ir())
コード例 #8
0
ファイル: test.py プロジェクト: CyanHillFox/tvm
def test():
    env = nnpu.get_env()
    nnpu.set_device(env)

    a = tvm.placeholder((4, 4, 16), 'int16', 'a')
    #b = tvm.placeholder((16, ), 'int16', 'b')

    sph = ScheduleProcHelper()

    a_buf, a_dram = nnpu.utils.CopyHtoBuf(a, 'a', sph)
    #b_buf, b_dram = nnpu.utils.CopyHtoBuf(b, 'b', sph)

    k = tvm.reduce_axis((0, 4), 'k0')
    c_buf = tvm.compute((4, 16), lambda i, j: tvm.sum(a_buf[k, i, j], axis=k),
                        'c_buf')
    sph.MarkScope(c_buf)
    c_host, c_dram = nnpu.utils.CopyBufToH(c_buf, 'c', sph)

    s = tvm.create_schedule(c_host.op)
    sph.Transform(s)
    ko, ki = s[c_buf].split(c_buf.op.reduce_axis[0], factor=1)
    s[c_buf].reorder(c_buf.op.axis[0], ko, ki, c_buf.op.axis[1])
    s[c_buf].tensorize(ki, env.intrins.get('VAddMerge', mode='w', nDim=3))

    print(nnpu.lower(s, [a, c_host], simple_mode=True))
    func = nnpu.build(s, [a, c_host], 'nnpu', 'llvm', name='nnpu_exp')

    ctx = tvm.nd.TVMContext(13, 0)

    a_np = np.random.randint(size=(4, 4, 16),
                             dtype=a.dtype,
                             low=-4000,
                             high=4000)
    #a_np = np.random.random(size=shape).astype(a_host.dtype)
    a_nd = tvm.nd.array(a_np, ctx)

    c_nd = tvm.nd.array(np.zeros((4, 16)).astype(c_host.dtype), ctx)

    func(a_nd, c_nd)
    print(c_nd.asnumpy())
    print("numpy ground truth is")
    gt = np.sum(a_np, axis=0)
    print(gt)
コード例 #9
0
def test_relu():
    shape = (2, 16)
    inputs = nnvm.symbol.Variable("inputs")
    env = nnpu.get_env()
    target_host = "llvm"
    device = "nnpu"
    target = tvm.target.create("llvm -device={}".format(device))
    z = nnvm.symbol.relu(inputs)
    compute_graph = nnvm.graph.create(z)
    with nnvm.compiler.build_config(opt_level=0):
        if target.device_name != "nnpu":
            deploy_graph, lib, params = nnvm.compiler.build(
                compute_graph,
                target,
                shape={"inputs": shape},
                dtype="float32",
                target_host=target_host)
        else:
            with ScheduleProcHelper():
                with nnpu.build_config():
                    nnpu.set_device(nnpu.get_env(), type='S0')
                    deploy_graph, lib, params = nnvm.compiler.build(
                        compute_graph,
                        target,
                        shape={"inputs": shape},
                        dtype="float32",
                        target_host=target_host)
        ctx = tvm.context(str("nnpu"), 0) if device == "nnpu" else tvm.context(
            str("llvm"), 0)
        m = runtime.create(deploy_graph, lib, ctx)
        a_np = np.random.random(size=(2, 16)).astype("float32") - 0.5
        m.set_input(**{'inputs': a_np})
        m.run()
        out = m.get_output(0, out=tvm.nd.empty((2, 16)))
        print(a_np)
        print(out.dtype)
        print(out)
        np.testing.assert_allclose(out.asnumpy(), np.maximum(a_np, 0))
        print("tests")
        print(compute_graph.ir())
        print(deploy_graph.ir())
コード例 #10
0
def test_onemore():
    shape = (1, 32, 32, 16)
    inputs = nnvm.symbol.Variable("inputs")
    env = nnpu.get_env()
    target_host = "llvm"
    device = "nnpu"
    target = tvm.target.create("llvm -device={}".format(device))

    z1 = nnvm.symbol.relu(inputs)
    z = nnvm.symbol.sqrt(z1)
    compute_graph = nnvm.graph.create(z)
    with nnvm.compiler.build_config(opt_level=0):
        if target.device_name != "nnpu":
            deploy_graph, lib, params = nnvm.compiler.build(
                compute_graph,
                target,
                shape={"inputs": shape},
                dtype="float32",
                target_host=target_host)
        else:
            with ScheduleProcHelper():
                with nnpu.build_config():
                    nnpu.set_device(nnpu.get_env(), type='S0')
                    deploy_graph, lib, params = nnvm.compiler.build(
                        compute_graph,
                        target,
                        shape={"inputs": shape},
                        dtype="float32",
                        target_host=target_host)
        ctx = tvm.context(str("nnpu"), 0) if device == "nnpu" else tvm.context(
            str("llvm"), 0)
        m = runtime.create(deploy_graph, lib, ctx)
        a_np = np.random.random(size=(1, 32, 32, 16))
        m.set_input(**{'inputs': a_np})
        m.run()
        out = m.get_output(0, out=tvm.nd.empty((1, 32, 32, 16)))
        print(out)
        print(compute_graph.ir())
        print(deploy_graph.ir())
コード例 #11
0
ファイル: test_ir_pass.py プロジェクト: CyanHillFox/tvm
def test():
    env = nnpu.get_env()
    nnpu.set_device(env)
    shape = (2, 16)
    a_host = tvm.placeholder(shape, env.cfg['dtype_n'], 'a_host')
    print('a host ' + str(a_host))
    a = tvm.compute(shape, lambda *i: a_host(*i), name='a')
    a_buf = tvm.compute(shape, lambda *i: a(*i), name='a_buf')
    b_buf = tvm.compute(
        shape,
        lambda i, j: tvm.log(a_buf[i, j].astype(env.cfg['dtype_w'])),
        name='b_buf')
    b = tvm.compute(shape, lambda *i: b_buf(*i), name='b')
    b_host = tvm.compute(shape, lambda *i: b(*i), name='b_host')

    s = tvm.create_schedule(b_host.op)

    # mark variable scopes
    s[a].set_scope(env.dram_scope)
    s[b].set_scope(env.dram_scope)

    s[a_buf].set_scope(env.uni_scratchpad_scope)
    s[b_buf].set_scope(env.uni_scratchpad_scope)

    #print
    # (dir(s[b].op.body))

    # mark compiler pragmas
    s[a].pragma(s[a].op.axis[0], env.dma_copy_pragma)
    s[b_host].pragma(s[b_host].op.axis[0], env.dma_copy_pragma)

    s[a_buf].pragma(s[a_buf].op.axis[0], env.scratchpad_ls)
    s[b].pragma(s[b].op.axis[0], env.scratchpad_ls)

    s[a_buf].compute_at(s[b_buf], b_buf.op.axis[0])

    # tensorize
    s[b_buf].tensorize(s[b_buf].op.axis[1], env.intrins.get('VLOG',
                                                            mode='inc'))

    # build
    print(tvm.lower(s, [a_host, b_host], simple_mode=True))
    print(nnpu.lower(s, [a_host, b_host], simple_mode=True))
    #exit()
    func = nnpu.build(s, [a_host, b_host], 'nnpu', 'llvm', name='nnpu_log')

    print('function built: ')
    #print(func.get_source())

    # prepare data
    ctx = tvm.nd.TVMContext(13, 0)  #???
    print('i want to know:')
    print(ctx.exist)
    a_np = np.random.randint(size=shape, dtype=a_host.dtype, low=1, high=20)
    a_nd = tvm.nd.array(a_np, ctx)
    b_nd = tvm.nd.array(np.zeros(shape).astype(b_host.dtype), ctx)

    # run
    func(a_nd, b_nd)

    print('run finished')

    b_np = b_nd.asnumpy()
    print('a=')
    print(a_np)
    print('b=')
    print(b_np)
    print('ground truth =')
    gt = np.log(a_np, dtype=b_host.dtype)
    print(gt)
    np.testing.assert_allclose(b_np, gt)
コード例 #12
0
def test():
    env = nnpu.get_env()
    nnpu.set_device(env)
    shape = (2, 2, 16)
    dtype_n, dtype_w = env.cfg['dtype_n'], env.cfg['dtype_w']
    a = tvm.placeholder(shape, dtype_w, 'a')

    sph = ScheduleProcHelper()

    a_buf, a_dram = nnpu.utils.CopyHtoBuf(a, 'a', sph)

    k = tvm.reduce_axis((0, 2), 'k')
    add_buf = tvm.compute(
        (2, 16), lambda i, j: tvm.sum(a_buf[k, i, j], axis=k), 'add_buf')
    sph.MarkScope(add_buf)
    add_host, add_dram = nnpu.utils.CopyBufToH(add_buf, 'add', sph)

    k1 = tvm.reduce_axis((0, 2), 'k1')
    mul_buf = tvm.compute(
        (2, 16), lambda i, j: tvm.sum(a_buf[k1, i, j], axis=k1), 'mul_buf')
    sph.MarkScope(mul_buf)
    mul_host, mul_dram = nnpu.utils.CopyBufToH(mul_buf, 'mul', sph)

    s = tvm.create_schedule([add_host.op, mul_host.op])
    sph.Transform(s)

    ko, ki = s[add_buf].split(add_buf.op.reduce_axis[0], factor=1)
    s[add_buf].reorder(ko, ki, *(s[add_buf].op.axis))
    s[add_buf].tensorize(ki, env.intrins.get('MAddMerge',
                                             shape=shape,
                                             mode='w'))

    ko1, ki1 = s[mul_buf].split(mul_buf.op.reduce_axis[0], factor=1)
    s[mul_buf].reorder(ko1, ki1, *(s[mul_buf].op.axis))
    s[mul_buf].tensorize(ki1,
                         env.intrins.get('MMulMerge', shape=shape, mode='w'))

    print(nnpu.lower(s, [a, add_host, mul_host], simple_mode=True))

    func = nnpu.build(s, [a, add_host, mul_host],
                      'nnpu',
                      'llvm',
                      name='nnpu_func')
    #exit()
    ctx = tvm.nd.TVMContext(13, 0)
    a_np = np.random.randint(size=(2, 2, 16), dtype=a.dtype, low=-16, high=16)
    a_nd = tvm.nd.array(a_np, ctx)

    add_nd = tvm.nd.array(np.zeros((2, 16)).astype(add_host.dtype), ctx)

    mul_nd = tvm.nd.array(np.zeros((2, 16)).astype(mul_host.dtype), ctx)

    func(a_nd, add_nd, mul_nd)

    print('a = ')
    print(a_np)
    print('reduce sum row = ')
    print(add_nd.asnumpy())
    print('ground truth is: ')
    gt = np.sum(a_np, axis=0)
    print(gt)
    np.testing.assert_allclose(add_nd.asnumpy(), gt)

    print('reduce mul row = ')
    print(mul_nd.asnumpy())
    gt = np.multiply.reduce(a_np, axis=0, dtype=a.dtype)
    print(gt)
    np.testing.assert_allclose(mul_nd.asnumpy(), gt)
コード例 #13
0
ファイル: test_Alexnet.py プロジェクト: CyanHillFox/tvm
def test_Alexnet():
    def Conv(data, kernel_size, filter_nums, stride=(1, 1), pad=(0, 0)):
        if pad[0] != 0 or pad[1] != 0:
            data = nnvm.symbol.pad(data=data,
                                   pad_width=((0, 0), (pad[0], pad[0]),
                                              (pad[1], pad[1]), (0, 0)))
        datas = nnvm.symbol.conv2d(data=data,
                                   kernel_size=kernel_size,
                                   channels=filter_nums,
                                   strides=stride,
                                   layout='NHWC',
                                   kernel_layout='HWOI')
        datas = nnvm.symbol.relu(data=datas)
        return datas

    def get_symbol(datas, num_classes):
        conv1 = Conv(data=datas,
                     kernel_size=(11, 11),
                     filter_nums=96,
                     stride=(4, 4))
        pool1 = nnvm.symbol.max_pool2d(data=conv1,
                                       pool_size=(3, 3),
                                       strides=(2, 2),
                                       layout='NHWC')
        conv2 = Conv(data=pool1,
                     kernel_size=(5, 5),
                     filter_nums=256,
                     pad=(2, 2))
        pool2 = nnvm.symbol.max_pool2d(data=conv2,
                                       pool_size=(3, 3),
                                       strides=(2, 2),
                                       layout='NHWC')
        conv3 = Conv(data=pool2,
                     kernel_size=(3, 3),
                     filter_nums=384,
                     pad=(1, 1))
        conv4 = Conv(data=conv3,
                     kernel_size=(3, 3),
                     filter_nums=384,
                     pad=(1, 1))
        conv5 = Conv(data=conv4,
                     kernel_size=(3, 3),
                     filter_nums=256,
                     pad=(1, 1))
        pool3 = nnvm.symbol.max_pool2d(data=conv5,
                                       pool_size=(3, 3),
                                       strides=(2, 2),
                                       layout='NHWC')
        datas = nnvm.symbol.flatten(data=pool3)
        fc1 = nnvm.symbol.dense(data=datas, units=1024)
        relu1 = nnvm.symbol.relu(data=fc1)
        drop1 = nnvm.symbol.dropout(data=relu1, rate=0.5)
        fc2 = nnvm.symbol.dense(data=drop1, units=1024)
        relu2 = nnvm.symbol.relu(data=fc2)
        drop2 = nnvm.symbol.dropout(data=relu2, rate=0.5)
        fc3 = nnvm.symbol.dense(data=drop2, units=16)
        symbol = nnvm.symbol.softmax(fc3)
        return symbol

    input_shape = (1, 128, 128, 16)
    target_host = "llvm"
    device = "nnpu"
    data = nnvm.symbol.Variable(name="data")
    target = tvm.target.create("llvm -device={}".format(device))
    print("ok")
    num_runs = 1
    z = get_symbol(datas=data, num_classes=16)
    compute_graph = nnvm.graph.create(z)
    print(compute_graph.ir())
    with nnvm.compiler.build_config(opt_level=0):
        if target.device_name != "nnpu":
            deploy_graph, lib, params = nnvm.compiler.build(
                compute_graph,
                target,
                shape={"data": input_shape},
                dtype="float32",
                target_host=target_host)
        else:
            with ScheduleProcHelper():
                with nnpu.build_config():
                    nnpu.set_device(nnpu.get_env(), type='SC')
                    deploy_graph, lib, params = nnvm.compiler.build(
                        compute_graph,
                        target,
                        shape={"data": input_shape},
                        dtype="float32",
                        target_host=target_host)
        ctx = tvm.context(str("nnpu"), 0) if device == "nnpu" else tvm.context(
            str("llvm"), 0)
        module = runtime.create(deploy_graph, lib, ctx)
        a_np = np.random.randint(size=input_shape, low=-32, high=32)
        print(a_np)
        module.set_input(data=a_np)
        ftimer = module.module.time_evaluator("run",
                                              ctx,
                                              number=num_runs,
                                              repeat=1)
        # module.run()
        out = module.get_output(0, out=tvm.nd.empty((1, 16)))
        print(out.asnumpy)
        print(deploy_graph.ir())
        print(ftimer().mean * 10)
コード例 #14
0
def test_densenet():
    def Conv(datas, kernel_size, filter_nums, stride=(1, 1), pad=(0, 0)):
        if pad[0] != 0 or pad[1] != 0:
            datas = nnvm.symbol.pad(data=datas,
                                    pad_width=((0, 0), (pad[0], pad[0]),
                                               (pad[1], pad[1]), (0, 0)))
        conv = nnvm.symbol.conv2d(data=datas,
                                  kernel_size=kernel_size,
                                  channels=filter_nums,
                                  strides=stride,
                                  layout='NHWC',
                                  kernel_layout='HWOI')
        return conv

    def bottleneck_layer(datas, filters):
        bn1 = nnvm.symbol.batch_norm(data=datas, epsilon=2e-5, axis=3)
        relu1 = nnvm.symbol.relu(data=bn1)
        conv1 = Conv(datas=relu1, kernel_size=(1, 1), filter_nums=4 * filters)
        bn2 = nnvm.symbol.batch_norm(data=conv1, epsilon=2e-5, axis=3)
        relu2 = nnvm.symbol.relu(data=bn2)
        conv2 = Conv(datas=relu2,
                     kernel_size=(3, 3),
                     filter_nums=filters,
                     pad=(1, 1))
        return conv2

    def transition_layer(datas, filters):
        conv = Conv(datas=datas, kernel_size=(1, 1), filter_nums=filters)

        pool = nnvm.symbol.avg_pool2d(data=conv,
                                      pool_size=(2, 2),
                                      strides=(2, 2),
                                      layout='NHWC')
        return pool

    def dense_block(datas, filters, layers):
        layers_concat = []
        layers_concat.append(datas)
        b_l = bottleneck_layer(datas, filters)

        layers_concat.append(b_l)
        for i in range(layers - 1):
            x = nnvm.symbol.concatenate(*layers_concat, axis=3)
            x = bottleneck_layer(x, filters)
            layers_concat.append(x)
        return x

    def get_symbol(datas, num_classes=16):
        x = Conv(datas, kernel_size=(7, 7), filter_nums=32, stride=(2, 2))

        x = nnvm.symbol.max_pool2d(x,
                                   pool_size=(3, 3),
                                   strides=(2, 2),
                                   layout='NHWC')

        b1 = dense_block(x, 32, 6)

        l1 = transition_layer(b1, 32)

        b2 = dense_block(l1, 32, 12)
        l2 = transition_layer(b2, 32)
        b3 = dense_block(l2, 32, 48)
        l3 = transition_layer(b3, 32)
        b4 = dense_block(l3, 32, 32)
        x = nnvm.symbol.global_avg_pool2d(data=b4, layout='NHWC')
        x = nnvm.symbol.flatten(data=x)
        fc = nnvm.symbol.dense(data=x, units=16)
        symbol = nnvm.symbol.softmax(data=fc)
        return symbol

    input_shape = (1, 229, 229, 16)
    target_host = "llvm"
    device = "nnpu"
    data = nnvm.symbol.Variable(name="data")
    target = tvm.target.create("llvm -device={}".format(device))
    print("ok")
    num_runs = 3
    z = get_symbol(datas=data, num_classes=16)
    compute_graph = nnvm.graph.create(z)
    with nnvm.compiler.build_config(opt_level=0):
        if target.device_name != "nnpu":
            deploy_graph, lib, params = nnvm.compiler.build(
                compute_graph,
                target,
                shape={"data": input_shape},
                dtype="float32",
                target_host=target_host)
        else:
            with ScheduleProcHelper():
                with nnpu.build_config():
                    nnpu.set_device(nnpu.get_env(), type='S0')
                    deploy_graph, lib, params = nnvm.compiler.build(
                        compute_graph,
                        target,
                        shape={"data": input_shape},
                        dtype="float32",
                        target_host=target_host)
        ctx = tvm.context(str("nnpu"), 0) if device == "nnpu" else tvm.context(
            str("llvm"), 0)
        module = runtime.create(deploy_graph, lib, ctx)
        a_np = np.random.random(size=input_shape)
        print(a_np)
        module.set_input(data=a_np)
        ftimer = module.module.time_evaluator("run",
                                              ctx,
                                              number=num_runs,
                                              repeat=1)
        module.run()

        out = module.get_output(0, out=tvm.nd.empty((1, 16)))
        print(out.asnumpy)
        print(deploy_graph.ir())
        print(ftimer().mean)
コード例 #15
0
import nnpu
import tvm
import topi
from nnpu.utils import ScheduleProcHelper
import numpy as np

with ScheduleProcHelper():
    env = nnpu.get_env()
    nnpu.set_device(env)

    t = 10  # time 
    n = 16  # input depth
    m = 16  # output depth
    x_shape = (t, n)
    h_shape = (t, m)
    w_shape = (m, n)
    u_shape = (m, m)
    b_shape = (m, )
    gemm_shape = (16, 16, 1)

    dtype_n, dtype_w = env.cfg['dtype_n'], env.cfg['dtype_w']
    x = tvm.placeholder(x_shape, dtype_n, 'x')
    x_buf, _ = nnpu.utils.CopyHtoBuf(x, 'x')

    w = tvm.placeholder(w_shape, dtype_n, 'w')
    w_buf, _ = nnpu.utils.CopyHtoBuf(w, 'w')

    u = tvm.placeholder(u_shape, dtype_w, 'u')
    u_buf, _ = nnpu.utils.CopyHtoBuf(u, 'u')

    b = tvm.placeholder(b_shape, dtype_w, 'b')
コード例 #16
0
from nnpu.utils import ScheduleProcHelper
import numpy as np

import argparse

parser = argparse.ArgumentParser(description='test of NNPU Op')
parser.add_argument('--sim',
                    type=str,
                    help='the simulator to use',
                    default='S0',
                    choices=['S0', 'S1', 'SC'])
args = parser.parse_args()

env = nnpu.get_env()
assert env.cfg['multi_core'], 'multi core test need multi_core switch on'
nnpu.set_device(env, type=args.sim)

with ScheduleProcHelper():
    env = nnpu.get_env()
    shape1 = (8, 128)  # (8, 128) reshaped & transpoased to (16, 8, 8)
    shape2 = (128, 128)  # (128, 128) tiled to (16, 128, 8)
    gemm_shape = (8, 8, 8)
    factor = gemm_shape[1]
    assert shape1[1] == shape2[1], \
        'gemm do dot product between rows, so the shape[1] of inputs should match'
    assert shape1[0] % gemm_shape[
        0] == 0, 'gemm insn require size of input 1 be x{0}'.format(
            gemm_shape[0])
    assert shape2[0] % gemm_shape[
        2] == 0, 'gemm insn require size of input 2 be x{0}'.format(
            gemm_shape[0])
コード例 #17
0
def test_vgg():
    def get_feature(internel_layer, layers, filters, batch_norm=False):
        """
		Get VGG feature body as stacks of convoltions.
		layers  : [1, 1, 2, 2, 2]
		filters : [64, 128, 256, 512, 512]
		"""
        for i, num in enumerate(layers):
            """
			i = 0, num = 1
			i = 1, num = 1
			i = 2, num = 2
			i = 3, num = 2
			i = 4, num = 2
			"""
            for j in range(num):
                internel_layer = sym.pad(data=internel_layer,
                                         pad_width=((0, 0), (1, 1), (1, 1),
                                                    (0, 0)))
                internel_layer = sym.conv2d(data=internel_layer,
                                            kernel_size=(3, 3),
                                            channels=filters[i],
                                            layout='NHWC',
                                            kernel_layout='HWOI',
                                            name="conv%s_%s" % (i + 1, j + 1))
                if batch_norm:
                    internel_layer = sym.batch_norm(data=internel_layer,
                                                    axis=3,
                                                    name="bn%s_%s" %
                                                    (i + 1, j + 1))
                internel_layer = sym.relu(data=internel_layer,
                                          name="relu%s_%s" % (i + 1, j + 1))

            internel_layer = sym.max_pool2d(data=internel_layer,
                                            pool_size=(2, 2),
                                            strides=(2, 2),
                                            layout="NHWC",
                                            name="pool%s" % (i + 1))
            return internel_layer

    def get_classifier(input_data, num_classes):
        """
		Get VGG classifier layers as fc layers.
		"""
        flatten = sym.flatten(data=input_data, name="flatten")
        fc1 = sym.dense(data=flatten, units=32, name="fc1")
        relu1 = sym.relu(data=fc1, name="relu1")
        drop1 = sym.dropout(data=relu1, rate=0.5, name="drop1")
        fc2 = sym.dense(data=drop1, units=32, name="fc2")
        relu2 = sym.relu(data=fc2, name="relu2")
        drop2 = sym.dropout(data=relu2, rate=0.5, name="drop2")
        fc3 = sym.dense(data=drop2, units=num_classes, name="fc3")
        return fc3

    def get_symbol(datas, num_classes, num_layers=11, batch_norm=False):
        """
		Parameters
		------------
		num_classes     : int, default 16
						Number of classification classes

		num_layers      : int
						Number of layers for the variant of vgg. Options are 11, 13, 16, 19

		batch_norm      : bool, default False
						Use batch normalization.

		"""
        vgg_spec = {
            11: ([1, 1, 2, 2, 2], [64, 128, 256, 512, 512]),
            13: ([2, 2, 2, 2, 2], [64, 128, 256, 512, 512]),
            16: ([2, 2, 3, 3, 3], [64, 128, 256, 512, 512]),
            19: ([2, 2, 4, 4, 4], [64, 128, 256, 512, 512])
        }

        if num_layers not in vgg_spec:
            raise ValueError(
                "Invalide num_layers {}. Choices are 11, 13, 16, 19.".format(
                    num_layers))
        layers, filters = vgg_spec[num_layers]
        feature = get_feature(datas, layers, filters, batch_norm)
        classifier = get_classifier(feature, num_classes)
        symbol = sym.softmax(data=classifier, name="softmax")
        return symbol

    input_shape = (1, 224, 224, 16)
    target_host = "llvm"
    device = "nnpu"
    data = nnvm.symbol.Variable(name="data")
    target = tvm.target.create("llvm -device={}".format(device))
    print("ok")
    num_runs = 1
    z = get_symbol(datas=data, num_classes=16)
    compute_graph = nnvm.graph.create(z)
    print(compute_graph.ir())
    with nnvm.compiler.build_config(opt_level=0):
        if target.device_name != "nnpu":
            deploy_graph, lib, params = nnvm.compiler.build(
                compute_graph,
                target,
                shape={"data": input_shape},
                dtype="float32",
                target_host=target_host)
        else:
            nnpu.set_device(nnpu.get_env(), type='SC')
            with ScheduleProcHelper():
                with nnpu.build_config():
                    deploy_graph, lib, params = nnvm.compiler.build(
                        compute_graph,
                        target,
                        shape={"data": input_shape},
                        dtype="float32",
                        target_host=target_host)
        ctx = tvm.context(str("nnpu"), 0) if device == "nnpu" else tvm.context(
            str("llvm"), 0)
        module = runtime.create(deploy_graph, lib, ctx)
        a_np = np.random.uniform(size=input_shape, low=-32,
                                 high=32).astype(np.float32)
        print(a_np)
        module.set_input(data=a_np)
        ftimer = module.module.time_evaluator("run",
                                              ctx,
                                              number=num_runs,
                                              repeat=1)
        # module.run()
        out = module.get_output(0, out=tvm.nd.empty((1, 16)))
        print(out.asnumpy)
        print(deploy_graph.ir())
        print(ftimer().mean * 10)
コード例 #18
0
def test_inception_v3():
    def Conv(data,
             num_filter,
             kernel=(1, 1),
             stride=(1, 1),
             pad=(0, 0),
             name=None,
             suffix=''):
        if pad[0] != 0 or pad[1] != 0:
            data = sym.pad(data=data,
                           pad_width=((0, 0), (pad[0], pad[0]),
                                      (pad[1], pad[1]), (0, 0)))
        conv = sym.conv2d(data=data,
                          channels=num_filter,
                          kernel_size=kernel,
                          strides=stride,
                          padding=(0, 0),
                          use_bias=False,
                          layout='NHWC',
                          kernel_layout='HWOI',
                          name="%s%s_conv2d" % (name, suffix))
        bn = sym.batch_norm(data=conv,
                            name="%s%s_batchnorm" % (name, suffix),
                            epsilon=2e-5,
                            axis=3)
        act = sym.relu(data=bn, name="%s%s_relu" % (name, suffix))
        return act

    def Pooling(data, kernel, stride, pad, pool_type, name):
        if pad[0] != 0 or pad[1] != 0:
            data = sym.pad(data=data,
                           pad_width=((0, 0), (pad[0], pad[0]),
                                      (pad[1], pad[1]), (0, 0)))
        if pool_type == 'max':
            return sym.max_pool2d(data=data,
                                  pool_size=kernel,
                                  strides=stride,
                                  name=name,
                                  layout='NHWC')
        if pool_type == 'avg':
            return sym.avg_pool2d(data=data,
                                  pool_size=kernel,
                                  strides=stride,
                                  name=name,
                                  layout='NHWC')
        raise ValueError("Invalid pooling type: " + pool_type)

    def Inception7A(data, num_1x1, num_3x3_red, num_3x3_1, num_3x3_2,
                    num_5x5_red, num_5x5, pool, proj, name):
        # num_1x1 = 64
        # num_3x3_red = 64
        # num_3x3_1 = 96
        # num_3x3_2 = 96
        # num_5x5_red = 48
        # num_5x5 = 64
        tower_1x1 = Conv(data, num_1x1, name=('%s_conv' % name))

        tower_5x5 = Conv(data,
                         num_5x5_red,
                         name=('%s_tower' % name),
                         suffix='_conv')
        tower_5x5 = Conv(tower_5x5,
                         num_5x5,
                         kernel=(5, 5),
                         pad=(2, 2),
                         name=('%s_tower' % name),
                         suffix='_conv_1')

        tower_3x3 = Conv(data,
                         num_3x3_red,
                         name=('%s_tower_1' % name),
                         suffix="_conv")
        tower_3x3 = Conv(tower_3x3,
                         num_3x3_1,
                         kernel=(3, 3),
                         pad=(1, 1),
                         name=('%s_tower_1' % name),
                         suffix='_conv_1')
        tower_3x3 = Conv(tower_3x3,
                         num_3x3_2,
                         kernel=(3, 3),
                         pad=(1, 1),
                         name=('%s_tower_1' % name),
                         suffix='_conv_2')
        pooling = Pooling(data,
                          kernel=(3, 3),
                          stride=(1, 1),
                          pad=(1, 1),
                          pool_type=pool,
                          name=('%s_pool_%s_pool' % (pool, name)))

        cproj = Conv(pooling, proj, name=('%s_tower_2' % name), suffix='_conv')
        concat = sym.concatenate(*[tower_1x1, tower_5x5, tower_3x3, cproj],
                                 axis=3,
                                 name='ch_concat_%s_chconcat' % name)
        return concat

    def Inception7B(data, num_3x3, num_d3x3_red, num_d3x3_1, num_d3x3_2, pool,
                    name):
        tower_3x3 = Conv(data,
                         num_3x3,
                         kernel=(3, 3),
                         pad=(0, 0),
                         stride=(2, 2),
                         name=('%s_conv' % name))

        tower_d3x3 = Conv(data,
                          num_d3x3_red,
                          name=('%s_tower' % name),
                          suffix='_conv')
        tower_d3x3 = Conv(tower_d3x3,
                          num_d3x3_1,
                          kernel=(3, 3),
                          pad=(1, 1),
                          stride=(1, 1),
                          name=('%s_tower' % name),
                          suffix='_conv_1')
        tower_d3x3 = Conv(tower_d3x3,
                          num_d3x3_2,
                          kernel=(3, 3),
                          pad=(0, 0),
                          stride=(2, 2),
                          name=('%s_tower' % name),
                          suffix='_conv_2')

        pooling = Pooling(data=data,
                          kernel=(3, 3),
                          stride=(2, 2),
                          pad=(0, 0),
                          pool_type="max",
                          name=('max_pool_%s_pool' % name))
        concat = sym.concatenate(*[tower_3x3, tower_d3x3, pooling],
                                 axis=3,
                                 name='ch_concat_%s_chconcat' % name)
        return concat

    def Inception7C(data, num_1x1, num_d7_red, num_d7_1, num_d7_2, num_q7_red,
                    num_q7_1, num_q7_2, num_q7_3, num_q7_4, pool, proj, name):
        tower_1x1 = Conv(data=data,
                         num_filter=num_1x1,
                         kernel=(1, 1),
                         name=('%s_conv' % name))

        tower_d7 = Conv(data=data,
                        num_filter=num_d7_red,
                        name=('%s_tower' % name),
                        suffix='_conv')
        tower_d7 = Conv(data=tower_d7,
                        num_filter=num_d7_1,
                        kernel=(1, 7),
                        pad=(0, 3),
                        name=('%s_tower' % name),
                        suffix='_conv_1')
        tower_d7 = Conv(data=tower_d7,
                        num_filter=num_d7_2,
                        kernel=(7, 1),
                        pad=(3, 0),
                        name=('%s_tower' % name),
                        suffix='_conv_2')

        tower_q7 = Conv(data=data,
                        num_filter=num_q7_red,
                        name=('%s_tower_1' % name),
                        suffix='_conv')
        tower_q7 = Conv(data=tower_q7,
                        num_filter=num_q7_1,
                        kernel=(7, 1),
                        pad=(3, 0),
                        name=('%s_tower_1' % name),
                        suffix='_conv_1')
        tower_q7 = Conv(data=tower_q7,
                        num_filter=num_q7_2,
                        kernel=(1, 7),
                        pad=(0, 3),
                        name=('%s_tower_1' % name),
                        suffix='_conv_2')
        tower_q7 = Conv(data=tower_q7,
                        num_filter=num_q7_3,
                        kernel=(7, 1),
                        pad=(3, 0),
                        name=('%s_tower_1' % name),
                        suffix='_conv_3')
        tower_q7 = Conv(data=tower_q7,
                        num_filter=num_q7_4,
                        kernel=(1, 7),
                        pad=(0, 3),
                        name=('%s_tower_1' % name),
                        suffix='_conv_4')

        pooling = Pooling(data=data,
                          kernel=(3, 3),
                          stride=(1, 1),
                          pad=(1, 1),
                          pool_type=pool,
                          name=('%s_pool_%s_pool' % (pool, name)))
        cproj = Conv(data=pooling,
                     num_filter=proj,
                     kernel=(1, 1),
                     name=('%s_tower_2' % name),
                     suffix='_conv')

        concat = sym.concatenate(*[tower_1x1, tower_d7, tower_q7, cproj],
                                 axis=3,
                                 name='ch_concat_%s_chconcat' % name)
        return concat

    def Inception7D(data, num_3x3_red, num_3x3, num_d7_3x3_red, num_d7_1,
                    num_d7_2, num_d7_3x3, pool, name):
        tower_3x3 = Conv(data=data,
                         num_filter=num_3x3_red,
                         name=('%s_tower' % name),
                         suffix='_conv')
        tower_3x3 = Conv(data=tower_3x3,
                         num_filter=num_3x3,
                         kernel=(3, 3),
                         pad=(0, 0),
                         stride=(2, 2),
                         name=('%s_tower' % name),
                         suffix='_conv_1')

        tower_d7_3x3 = Conv(data=data,
                            num_filter=num_d7_3x3_red,
                            name=('%s_tower_1' % name),
                            suffix='_conv')
        tower_d7_3x3 = Conv(data=tower_d7_3x3,
                            num_filter=num_d7_1,
                            kernel=(1, 7),
                            pad=(0, 3),
                            name=('%s_tower_1' % name),
                            suffix='_conv_1')
        tower_d7_3x3 = Conv(data=tower_d7_3x3,
                            num_filter=num_d7_2,
                            kernel=(7, 1),
                            pad=(3, 0),
                            name=('%s_tower_1' % name),
                            suffix='_conv_2')
        tower_d7_3x3 = Conv(data=tower_d7_3x3,
                            num_filter=num_d7_3x3,
                            kernel=(3, 3),
                            stride=(2, 2),
                            name=('%s_tower_1' % name),
                            suffix='_conv_3')
        pooling = Pooling(data=data,
                          kernel=(3, 3),
                          stride=(2, 2),
                          pool_type=pool,
                          pad=(0, 0),
                          name=('%s_pool_%s_pool' % (pool, name)))

        concat = sym.concatenate(*[tower_3x3, tower_d7_3x3, pooling],
                                 axis=3,
                                 name='ch_concat_%s_chconcat' % name)
        return concat

    def Inception7E(data, num_1x1, num_d3_red, num_d3_1, num_d3_2,
                    num_3x3_d3_red, num_3x3, num_3x3_d3_1, num_3x3_d3_2, pool,
                    proj, name):

        tower_1x1 = Conv(data=data,
                         num_filter=num_1x1,
                         kernel=(1, 1),
                         name=('%s_conv' % name))

        tower_d3 = Conv(data=data,
                        num_filter=num_d3_red,
                        name=('%s_tower' % name),
                        suffix='_conv')
        tower_d3_a = Conv(data=tower_d3,
                          num_filter=num_d3_1,
                          kernel=(1, 3),
                          pad=(0, 1),
                          name=('%s_tower' % name),
                          suffix='_mixed_conv')
        tower_d3_b = Conv(data=tower_d3,
                          num_filter=num_d3_2,
                          kernel=(3, 1),
                          pad=(1, 0),
                          name=('%s_tower' % name),
                          suffix='_mixed_conv_1')

        tower_3x3_d3 = Conv(data=data,
                            num_filter=num_3x3_d3_red,
                            name=('%s_tower_1' % name),
                            suffix='_conv')
        tower_3x3_d3 = Conv(data=tower_3x3_d3,
                            num_filter=num_3x3,
                            kernel=(3, 3),
                            pad=(1, 1),
                            name=('%s_tower_1' % name),
                            suffix='_conv_1')
        tower_3x3_d3_a = Conv(data=tower_3x3_d3,
                              num_filter=num_3x3_d3_1,
                              kernel=(1, 3),
                              pad=(0, 1),
                              name=('%s_tower_1' % name),
                              suffix='_mixed_conv')
        tower_3x3_d3_b = Conv(data=tower_3x3_d3,
                              num_filter=num_3x3_d3_2,
                              kernel=(3, 1),
                              pad=(1, 0),
                              name=('%s_tower_1' % name),
                              suffix='_mixed_conv_1')

        pooling = Pooling(data=data,
                          kernel=(3, 3),
                          stride=(1, 1),
                          pad=(1, 1),
                          pool_type=pool,
                          name=('%s_pool_%s_pool' % (pool, name)))
        cproj = Conv(data=pooling,
                     num_filter=proj,
                     kernel=(1, 1),
                     name=('%s_tower_2' % name),
                     suffix='_conv')

        concat = sym.concatenate(*[
            tower_1x1, tower_d3_a, tower_d3_b, tower_3x3_d3_a, tower_3x3_d3_b,
            cproj
        ],
                                 axis=3,
                                 name='ch_concat_%s_chconcat' % name)
        return concat

    def get_symbol(data, num_classes=16, **kwargs):
        conv = Conv(data, 32, kernel=(3, 3), stride=(2, 2), name="conv")
        conv_1 = Conv(conv, 32, kernel=(3, 3), name="conv_1")
        conv_2 = Conv(conv_1, 64, kernel=(3, 3), pad=(1, 1), name="conv_2")
        pool = Pooling(data=conv_2,
                       kernel=(3, 3),
                       stride=(2, 2),
                       pool_type="max",
                       pad=(0, 0),
                       name="pool")
        conv_3 = Conv(pool, 80, kernel=(1, 1), name="conv_3")
        conv_4 = Conv(conv_3, 192, kernel=(3, 3), name="conv_4")
        pool1 = Pooling(data=conv_4,
                        kernel=(3, 3),
                        stride=(2, 2),
                        pool_type="max",
                        pad=(0, 0),
                        name="pool1")

        in3a = Inception7A(pool1, 64, 64, 96, 96, 48, 64, "avg", 32, "mixed")
        in3b = Inception7A(in3a, 64, 64, 96, 96, 48, 64, "avg", 64, "mixed_1")

        in3c = Inception7A(in3b, 64, 64, 96, 96, 48, 64, "avg", 64, "mixed_2")

        in3d = Inception7B(in3c, 384, 64, 96, 96, "max", "mixed_3")

        in4a = Inception7C(in3d, 192, 128, 128, 192, 128, 128, 128, 128, 192,
                           "avg", 192, "mixed_4")

        in4b = Inception7C(in4a, 192, 160, 160, 192, 160, 160, 160, 160, 192,
                           "avg", 192, "mixed_5")
        in4c = Inception7C(in4b, 192, 160, 160, 192, 160, 160, 160, 160, 192,
                           "avg", 192, "mixed_6")
        in4d = Inception7C(in4c, 192, 192, 192, 192, 192, 192, 192, 192, 192,
                           "avg", 192, "mixed_7")

        in4e = Inception7D(in4d, 192, 320, 192, 192, 192, 192, "max",
                           "mixed_8")

        in5a = Inception7E(in4e, 320, 384, 384, 384, 448, 384, 384, 384, "avg",
                           192, "mixed_9")
        in5b = Inception7E(in5a, 320, 384, 384, 384, 448, 384, 384, 384, "max",
                           192, "mixed_10")

        pool = Pooling(data=in5b,
                       kernel=(8, 8),
                       stride=(1, 1),
                       pool_type="avg",
                       pad=(0, 0),
                       name="global_pool")
        flatten = sym.flatten(data=pool, name="flatten")
        fc1 = sym.dense(data=flatten, units=num_classes, name="fc1")
        softmax = sym.softmax(data=fc1, name="softmax")
        return softmax

    input_shape = (1, 299, 299, 16)
    target_host = "llvm"
    device = "nnpu"
    data = nnvm.symbol.Variable(name="data")
    target = tvm.target.create("llvm -device={}".format(device))
    print("ok")
    num_runs = 3
    z = get_symbol(data=data, num_classes=16)
    compute_graph = nnvm.graph.create(z)
    with nnvm.compiler.build_config(opt_level=1):
        if target.device_name != "nnpu":
            deploy_graph, lib, params = nnvm.compiler.build(
                compute_graph,
                target,
                shape={"data": input_shape},
                dtype="float32",
                target_host=target_host)
        else:
            with ScheduleProcHelper():
                with nnpu.build_config():
                    nnpu.set_device(nnpu.get_env(), type='S0')
                    deploy_graph, lib, params = nnvm.compiler.build(
                        compute_graph,
                        target,
                        shape={"data": input_shape},
                        dtype="float32",
                        target_host=target_host)
        ctx = tvm.context(str("nnpu"), 0) if device == "nnpu" else tvm.context(
            str("llvm"), 0)
        module = runtime.create(deploy_graph, lib, ctx)
        a_np = np.random.uniform(size=(1, 299, 299, 16), low=-32,
                                 high=32).astype(np.float32)
        print(a_np)
        module.set_input(data=a_np)
        ftimer = module.module.time_evaluator("run",
                                              ctx,
                                              number=num_runs,
                                              repeat=1)
        module.run()
        out = module.get_output(0, out=tvm.nd.empty((1, 16)))
        print(out.asnumpy)
        print(deploy_graph.ir())
        print(ftimer().mean * 10)
コード例 #19
0
ファイル: test_padding.py プロジェクト: CyanHillFox/tvm
import nnpu
import tvm
import topi
from nnpu.utils import ScheduleProcHelper
import numpy as np

with (ScheduleProcHelper()):
    env = nnpu.get_env()
    nnpu.set_device(env, type='S0')
    dtype_n, dtype_w = env.cfg['dtype_n'], env.cfg['dtype_w']

    a = tvm.placeholder((2, 4, 16), dtype_n, 'a')
    a_buf, a_dram = nnpu.utils.CopyHtoBuf(a, 'a')

    pad_buf = tvm.compute((2, 6, 16), lambda i, j, k: tvm.expr.Select(
        j >= 2, a_buf[i, j - 2, k], tvm.const(0, dtype_n)), 'pad')
    nnpu.utils.MarkScope(pad_buf)
    nnpu.utils.PragmaCopy(pad_buf)
    tile_host, _ = nnpu.utils.CopyBufToH(pad_buf, 'tile')

    s = nnpu.create_schedule([tile_host.op])

    print(tvm.lower(s, [a, tile_host], simple_mode=True))
    print(nnpu.lower(s, [a, tile_host], simple_mode=True))
    # exit(0)
    func = nnpu.build(s, [a, tile_host], 'nnpu', 'llvm', name='nnpu_func')

    ctx = tvm.nd.TVMContext(13, 0)
    a_np = np.random.randint(size=(2, 4, 16),
                             dtype=a.dtype,
                             low=-128,
コード例 #20
0
ファイル: test_nms.py プロジェクト: CyanHillFox/tvm
def test_ib():
    print('aaaa')
    env = nnpu.get_env()
    nnpu.set_device(env)
    shape = (16, )
    dtype_n, dtype_w = env.cfg['dtype_n'], env.cfg['dtype_w']
    a = tvm.placeholder(shape, dtype_w, name='a')
    w = shape[0]
    e = 16

    def build_nms_ir(ten_in, ten_out):
        ib = tvm.ir_builder.create()
        imm_value = 10
        ib.scope_attr(env.nnpu_axis, "coproc_scope", 0)
        p_in = ib.buffer_ptr(ten_in[0])
        p_out = ib.buffer_ptr(ten_out[0])
        #with ib.for_range(0,w, name="k") as k:
        with ib.for_range(0, w / e, name="i") as i:
            ib.emit(
                make_intrin_call(
                    "void", 'VAddI', ten_out[0].access_ptr("w", 'uint32') +
                    i * dtype_bytes(dtype_w),
                    ten_in[0].access_ptr("r", 'uint32') +
                    i * dtype_bytes(dtype_w), tvm.const(imm_value, 'float64'),
                    env.cfg['vector_unit']['size'], 3))
        stmt = ib.get()
        return stmt

    sph = ScheduleProcHelper()
    a_buf, a_dram = nnpu.utils.CopyHtoBuf(a, 'a', sph)
    sph.MarkScope(a_buf)
    out = tvm.extern(a_buf.shape, [a_buf],
                     build_nms_ir,
                     in_buffers=[
                         tvm.decl_buffer(a_buf.shape,
                                         dtype_w,
                                         data_alignment=dtype_bytes(dtype_w),
                                         scope='local.nnpu_scratchpad0')
                     ],
                     out_buffers=[
                         tvm.decl_buffer(a_buf.shape,
                                         dtype_w,
                                         data_alignment=dtype_bytes(dtype_w),
                                         scope='local.nnpu_scratchpad0')
                     ],
                     dtype=dtype_w,
                     name="test_ir")
    sph.MarkScope(out)
    out_host, out_dram = nnpu.utils.CopyBufToH(out, 'out', sph)
    s = tvm.create_schedule([out_host.op])
    sph.Transform(s)
    print(tvm.lower(s, [a, out_host], simple_mode=True))
    print(nnpu.lower(s, [a, out_host], simple_mode=True))
    # exit(0)
    func = nnpu.build(s, [a, out_host], 'nnpu', 'llvm', name='nnpu_test')
    ctx = tvm.nd.TVMContext(13, 0)
    a_np = np.random.randint(size=(16, ), dtype=a.dtype, low=0, high=127)
    a_nd = tvm.nd.array(a_np, ctx)

    b_nd = tvm.nd.array(np.zeros(16, ).astype(out_host.dtype), ctx)

    func(a_nd, b_nd)

    print('a = ')
    print(a_np)
    print('xjb sum = ')
    print(b_nd.asnumpy())
    return
コード例 #21
0
ファイル: test_resnet.py プロジェクト: CyanHillFox/tvm
def test_resnets():
    def residual_unit(data,
                      num_filter,
                      stride,
                      dim_match,
                      name,
                      bottle_neck=True):
        # bottle_neck : False
        """
        Return Resnet Unit symbol for building Resnet
        Parameters
        ------------
        data       :  str
                    Input data
        
        num_filter :  int
                    Number of output channels
        
        stride     :  tuple
                    Stride used in convolution
                
        dim_match  :  Boolean
                    True means channel number between input and output is the same
                    otherwise means differ
        """
        if bottle_neck:
            bn1 = nnvm.symbol.batch_norm(data=data,
                                         axis=3,
                                         epsilon=2e-5,
                                         name=name + '_bn1')
            act1 = nnvm.symbol.relu(data=bn1, name=name + '_relu1')
            conv1 = nnvm.symbol.conv2d(data=act1,
                                       channels=int(num_filter * 0.25),
                                       kernel_size=(1, 1),
                                       strides=stride,
                                       padding=(0, 0),
                                       use_bias=False,
                                       layout='NHWC',
                                       kernel_layout='HWOI',
                                       name=name + '_conv1')
            bn2 = nnvm.symbol.batch_norm(data=conv1,
                                         axis=3,
                                         epsilon=2e-5,
                                         name=name + '_bn2')
            act2 = nnvm.symbol.relu(data=bn2, name=name + '_relu2')

            pad = nnvm.symbol.pad(data=act2,
                                  pad_width=((0, 0), (1, 1), (1, 1), (0, 0)))
            conv2 = nnvm.symbol.conv2d(data=pad,
                                       channels=int(num_filter * 0.25),
                                       kernel_size=(3, 3),
                                       strides=(1, 1),
                                       padding=(0, 0),
                                       use_bias=False,
                                       layout='NHWC',
                                       kernel_layout='HWOI',
                                       name=name + '_conv2')

            bn3 = nnvm.symbol.batch_norm(data=conv2,
                                         axis=3,
                                         epsilon=2e-5,
                                         name=name + '_bn3')
            act3 = nnvm.symbol.relu(data=bn3, name=name + '_relu3')
            conv3 = nnvm.symbol.conv2d(data=act3,
                                       channels=num_filter,
                                       kernel_size=(1, 1),
                                       strides=(1, 1),
                                       padding=(0, 0),
                                       use_bias=False,
                                       layout='NHWC',
                                       kernel_layout='HWOI',
                                       name=name + '_conv3')

            if dim_match:
                shortcut = data
            else:
                shortcut = nnvm.symbol.conv2d(data=act1,
                                              channels=num_filter,
                                              kernel_size=(1, 1),
                                              strides=stride,
                                              use_bias=False,
                                              layout='NHWC',
                                              kernel_layout='HWOI',
                                              name=name + '_sc')
            return nnvm.symbol.elemwise_add(conv3, shortcut)
        else:
            # bottle_neck = False
            # i = 0 : filter_list[1] = 64, (1, 1), False
            # i = 1 : filter_list[2] = 128, (2, 2), False
            # i = 2 : filter_list[3] = 256, (2, 2), False
            # i = 3 : filter_list[4] = 512, (2, 2), False
            # bn1 = nnvm.symbol.batch_norm(data = data, axis = 3, epsilon = 2e-5, name = name + '_bn1')
            act1 = nnvm.symbol.relu(data=data, name=name + '_relu1')
            # (56, 56, 64)
            # num_filter = filter_list[1] = 64
            # strides = (1, 1)
            pad1 = nnvm.symbol.pad(data=act1,
                                   pad_width=((0, 0), (1, 1), (1, 1), (0, 0)))
            conv1 = nnvm.symbol.conv2d(data=pad1,
                                       channels=num_filter,
                                       kernel_size=(3, 3),
                                       strides=stride,
                                       padding=(0, 0),
                                       use_bias=False,
                                       layout='NHWC',
                                       kernel_layout='HWOI',
                                       name=name + '_bn2')
            # i = 0 : (56, 56, 64)
            # i = 1 : (28, 28, 128)
            # i = 2 : (14, 14, 256)
            # i = 3 : (7, 7, 512)
            # bn2 = nnvm.symbol.batch_norm(data = conv1, axis = 3, epsilon = 2e-5, name = name + '_bn2')
            act2 = nnvm.symbol.relu(data=conv1, name=name + '_relu2')
            # (56, 56, 64)
            pad2 = nnvm.symbol.pad(data=act2,
                                   pad_width=((0, 0), (1, 1), (1, 1), (0, 0)))
            conv2 = nnvm.symbol.conv2d(data=pad2,
                                       channels=num_filter,
                                       kernel_size=(3, 3),
                                       strides=(1, 1),
                                       padding=(0, 0),
                                       use_bias=False,
                                       layout='NHWC',
                                       kernel_layout='HWOI',
                                       name=name + '_conv2')
            # i = 0 : (56, 56, 64)
            # i = 1 : (28, 28, 128)
            # i = 2 : (14, 14, 256)
            if dim_match:
                shortcut = data
            else:
                shortcut = nnvm.symbol.conv2d(data=act1,
                                              channels=num_filter,
                                              kernel_size=(1, 1),
                                              strides=stride,
                                              use_bias=False,
                                              layout='NHWC',
                                              kernel_layout='HWOI',
                                              name=name + '_sc')
            return nnvm.symbol.elemwise_add(conv2, shortcut)

    def resnet(datas,
               units,
               num_stages,
               filter_list,
               num_classes,
               image_shape,
               bottle_neck=True):
        # units = [2, 2, 2, 2]
        # num_stages = 4
        # filter_list = [64, 64, 128, 256, 512]
        # num_classes = 1000
        # image_shape = (224, 224, 16)
        # bottle_neck = False
        """
        Return Resnet symbol of
        Parameters
        ------------
        units       : list
                        Number of units in each stage
        
        num_stage   : int
                        Number of stage
                        
        filter_list : list
                        Channel size of each stage
        
        num_classes : int
                        Output size of symbol
        """
        num_unit = len(units)
        assert num_unit == num_stages

        data = nnvm.symbol.batch_norm(data=datas,
                                      axis=3,
                                      epsilon=2e-5,
                                      scale=False,
                                      name="bn_data")

        (_, height, _, _) = image_shape
        if height <= 32:
            pad = nnvm.symbol.pad(data=data,
                                  pad_width=((0, 0), (1, 1), (1, 1), (0, 0)))
            body = nnvm.symbol.conv2d(data=pad,
                                      channels=filter_list[0],
                                      kernel_size=(3, 3),
                                      strides=(1, 1),
                                      padding=(1, 1),
                                      use_bias=False,
                                      layout='NHWC',
                                      kernel_layout='HWOI',
                                      name="conv0")
        else:
            pad = nnvm.symbol.pad(data=data,
                                  pad_width=((0, 0), (3, 3), (3, 3), (0, 0)))

            body = nnvm.symbol.conv2d(data=pad,
                                      channels=filter_list[0],
                                      kernel_size=(7, 7),
                                      strides=(2, 2),
                                      padding=(0, 0),
                                      use_bias=False,
                                      layout='NHWC',
                                      kernel_layout='HWOI',
                                      name="conv0")
            # body.shape = (112, 112, 64)
            # body = nnvm.symbol.batch_norm(data = body, axis = 3, epsilon = 2e-5, name = "bn0")
            body = nnvm.symbol.relu(data=body, name="relu0")
            # body = nnvm.symbol.pad(data = body, pad_width = ((0, 0), (1, 1), (1, 1), (0, 0)))
            body = nnvm.symbol.max_pool2d(data=body,
                                          pool_size=(3, 3),
                                          strides=(2, 2),
                                          layout='NHWC')

            # body.shape = (56, 56, 64)
        for i in range(num_stages):
            # num_stages == 4
            # i = 0: (56, 56, 64)
            # i = 1: filter_list[2] = 128, (2, 2), False (28, 28, 128)
            # i = 2: filter_list[3] = 256, (2, 2), False
            # i = 3: filter_list[4] = 512, (2, 2), False

            body = residual_unit(body,
                                 filter_list[i + 1],
                                 (1 if i == 0 else 2, 1 if i == 0 else 2),
                                 False,
                                 name='stage%d_unit%d' % (i + 1, 1),
                                 bottle_neck=bottle_neck)
            # (56, 56, 64)
            # units[0] - 1 = 1
            for j in range(units[i] - 1):
                body = residual_unit(body,
                                     filter_list[i + 1], (1, 1),
                                     True,
                                     name="stage%d_unit%d" % (i + 1, j + 2),
                                     bottle_neck=bottle_neck)
                # (56, 56, 64)
        # (7, 7, 512)
        # bn1 = nnvm.symbol.batch_norm(data = body, axis = 3, epsilon = 2e-5, name = "bn1")
        relu1 = nnvm.symbol.relu(data=body, name="relu1")
        pool1 = nnvm.symbol.global_avg_pool2d(data=relu1,
                                              layout='NHWC',
                                              name="pool1")
        # (1, 1, 512)
        flat = nnvm.symbol.flatten(data=pool1)
        # (512)
        fc1 = nnvm.symbol.dense(data=flat, units=num_classes, name='fc1')

        return nnvm.symbol.softmax(data=fc1, name='softmax')

    def get_symbol(datas,
                   num_classes,
                   num_layers=50,
                   image_shape=(1, 224, 224, 16),
                   **kwargs):
        (_, height, _, _) = image_shape
        if height <= 28:
            num_stages = 3
            if (num_layers - 2) % 9 == 0 and num_layers >= 164:
                per_unit = [(num_layers - 2) // 9]
                filter_list = [16, 64, 128, 256]
                bottle_neck = True
            elif (num_layers - 2) % 6 == 0 and num_layers < 164:
                per_unit = [(num_layers - 2) // 6]
                filter_list = [16, 16, 32, 64]
                bottle_neck = False
            else:
                raise ValueError(
                    "no experiments done on num_layers {}".format(num_layers))
            units = per_unit * num_stages
        else:
            print("height = 224 > 28")
            # height = 224 > 28
            if num_layers >= 50:
                filter_list = [64, 256, 512, 1024, 2048]

                bottle_neck = True
            else:
                print("num_layers = 18 < 50")
                # num_layers = 18 < 50
                filter_list = [64, 64, 128, 256, 512]
                bottle_neck = False
            num_stages = 4
            if num_layers == 18:
                units = [2, 2, 2, 2]
            elif num_layers == 34:
                units = [3, 4, 6, 3]
            elif num_layers == 50:
                units = [3, 4, 6, 3]
            elif num_layers == 101:
                units = [3, 4, 23, 3]
            elif num_layers == 152:
                units = [3, 8, 36, 3]
            elif num_layers == 200:
                units = [3, 24, 36, 3]
            elif num_layers == 269:
                units = [3, 30, 48, 8]
            else:
                raise ValueError(
                    "no experiments done on num_layers {}".format(num_layers))
            return resnet(datas=datas,
                          units=units,
                          num_stages=num_stages,
                          filter_list=filter_list,
                          num_classes=num_classes,
                          image_shape=image_shape,
                          bottle_neck=bottle_neck)

    input_shape = (1, 224, 224, 16)
    target_host = "llvm"
    device = "nnpu"
    data = nnvm.symbol.Variable(name="data")
    target = tvm.target.create("llvm -device={}".format(device))
    print("ok")
    num_runs = 3
    z = get_symbol(datas=data,
                   num_classes=16,
                   num_layers=18,
                   image_shape=(1, 224, 224, 16))
    compute_graph = nnvm.graph.create(z)
    print(compute_graph.ir())
    with nnvm.compiler.build_config(opt_level=0):
        if target.device_name != "nnpu":

            deploy_graph, lib, params = nnvm.compiler.build(
                compute_graph,
                target,
                shape={"data": input_shape},
                dtype="float32",
                target_host=target_host)
        else:
            with ScheduleProcHelper():
                with nnpu.build_config():
                    nnpu.set_device(nnpu.get_env(), type='S0')
                    deploy_graph, lib, params = nnvm.compiler.build(
                        compute_graph,
                        target,
                        shape={"data": input_shape},
                        dtype="float32",
                        target_host=target_host)
        print(deploy_graph.ir())
        ctx = tvm.context(str("nnpu"), 0) if device == "nnpu" else tvm.context(
            str("llvm"), 0)
        module = runtime.create(deploy_graph, lib, ctx)
        a_np = np.random.uniform(size=(1, 224, 224, 16), low=-32,
                                 high=32).astype(np.float32)
        print(a_np)
        module.set_input(data=a_np)
        ftimer = module.module.time_evaluator("run",
                                              ctx,
                                              number=num_runs,
                                              repeat=1)

        module.run()
        out = module.get_output(0, out=tvm.nd.empty((1, 16)))
        print(out.asnumpy)
        print(deploy_graph.ir())
        print(ftimer().mean * 10)