class nnUNetTrainer(NetworkTrainer): def __init__(self, plans_file, fold, output_folder=None, dataset_directory=None, batch_dice=True, stage=None, unpack_data=True, deterministic=True, fp16=False): """ :param deterministic: :param fold: can be either [0 ... 5) for cross-validation, 'all' to train on all available training data or None if you wish to load some checkpoint and do inference only :param plans_file: the pkl file generated by preprocessing. This file will determine all design choices :param subfolder_with_preprocessed_data: must be a subfolder of dataset_directory (just the name of the folder, not the entire path). This is where the preprocessed data lies that will be used for network training. We made this explicitly available so that differently preprocessed data can coexist and the user can choose what to use. Can be None if you are doing inference only. :param output_folder: where to store parameters, plot progress and to the validation :param dataset_directory: the parent directory in which the preprocessed Task data is stored. This is required because the split information is stored in this directory. For running prediction only this input is not required and may be set to None :param batch_dice: compute dice loss for each sample and average over all samples in the batch or pretend the batch is a pseudo volume? :param stage: The plans file may contain several stages (used for lowres / highres / pyramid). Stage must be specified for training: if stage 1 exists then stage 1 is the high resolution stage, otherwise it's 0 :param unpack_data: if False, npz preprocessed data will not be unpacked to npy. This consumes less space but is considerably slower! Running unpack_data=False with 2d should never be done! IMPORTANT: If you inherit from nnUNetTrainer and the init args change then you need to redefine self.init_args in your init accordingly. Otherwise checkpoints won't load properly! """ super(nnUNetTrainer, self).__init__(deterministic, fp16) self.unpack_data = unpack_data self.init_args = (plans_file, fold, output_folder, dataset_directory, batch_dice, stage, unpack_data, deterministic, fp16) # set through arguments from init self.stage = stage self.experiment_name = self.__class__.__name__ self.plans_file = plans_file self.output_folder = output_folder self.dataset_directory = dataset_directory self.output_folder_base = self.output_folder self.fold = fold self.plans = None # if we are running inference only then the self.dataset_directory is set (due to checkpoint loading) but it # irrelevant if self.dataset_directory is not None and isdir(self.dataset_directory): self.gt_niftis_folder = join(self.dataset_directory, "gt_segmentations") else: self.gt_niftis_folder = None self.folder_with_preprocessed_data = None # set in self.initialize() self.dl_tr = self.dl_val = None self.num_input_channels = self.num_classes = self.net_pool_per_axis = self.patch_size = self.batch_size = \ self.threeD = self.base_num_features = self.intensity_properties = self.normalization_schemes = \ self.net_num_pool_op_kernel_sizes = self.net_conv_kernel_sizes = None # loaded automatically from plans_file self.basic_generator_patch_size = self.data_aug_params = self.transpose_forward = self.transpose_backward = None self.batch_dice = batch_dice self.loss = DC_and_CE_loss({'batch_dice': self.batch_dice, 'smooth': 1e-5, 'do_bg': False}, {}) self.online_eval_foreground_dc = [] self.online_eval_tp = [] self.online_eval_fp = [] self.online_eval_fn = [] self.classes = self.do_dummy_2D_aug = self.use_mask_for_norm = self.only_keep_largest_connected_component = \ self.min_region_size_per_class = self.min_size_per_class = None self.inference_pad_border_mode = "constant" self.inference_pad_kwargs = {'constant_values': 0} self.update_fold(fold) self.pad_all_sides = None self.lr_scheduler_eps = 1e-3 self.lr_scheduler_patience = 30 self.initial_lr = 3e-4 self.weight_decay = 3e-5 self.oversample_foreground_percent = 0.33 self.conv_per_stage = None self.regions_class_order = None def update_fold(self, fold): """ used to swap between folds for inference (ensemble of models from cross-validation) DO NOT USE DURING TRAINING AS THIS WILL NOT UPDATE THE DATASET SPLIT AND THE DATA AUGMENTATION GENERATORS :param fold: :return: """ if fold is not None: if isinstance(fold, str): assert fold == "all", "if self.fold is a string then it must be \'all\'" if self.output_folder.endswith("%s" % str(self.fold)): self.output_folder = self.output_folder_base self.output_folder = join(self.output_folder, "%s" % str(fold)) else: if self.output_folder.endswith("fold_%s" % str(self.fold)): self.output_folder = self.output_folder_base self.output_folder = join(self.output_folder, "fold_%s" % str(fold)) self.fold = fold def setup_DA_params(self): if self.threeD: self.data_aug_params = default_3D_augmentation_params if self.do_dummy_2D_aug: self.data_aug_params["dummy_2D"] = True self.print_to_log_file("Using dummy2d data augmentation") self.data_aug_params["elastic_deform_alpha"] = \ default_2D_augmentation_params["elastic_deform_alpha"] self.data_aug_params["elastic_deform_sigma"] = \ default_2D_augmentation_params["elastic_deform_sigma"] self.data_aug_params["rotation_x"] = default_2D_augmentation_params["rotation_x"] else: self.do_dummy_2D_aug = False if max(self.patch_size) / min(self.patch_size) > 1.5: default_2D_augmentation_params['rotation_x'] = (-15. / 360 * 2. * np.pi, 15. / 360 * 2. * np.pi) self.data_aug_params = default_2D_augmentation_params self.data_aug_params["mask_was_used_for_normalization"] = self.use_mask_for_norm if self.do_dummy_2D_aug: self.basic_generator_patch_size = get_patch_size(self.patch_size[1:], self.data_aug_params['rotation_x'], self.data_aug_params['rotation_y'], self.data_aug_params['rotation_z'], self.data_aug_params['scale_range']) self.basic_generator_patch_size = np.array([self.patch_size[0]] + list(self.basic_generator_patch_size)) patch_size_for_spatialtransform = self.patch_size[1:] else: self.basic_generator_patch_size = get_patch_size(self.patch_size, self.data_aug_params['rotation_x'], self.data_aug_params['rotation_y'], self.data_aug_params['rotation_z'], self.data_aug_params['scale_range']) patch_size_for_spatialtransform = self.patch_size self.data_aug_params['selected_seg_channels'] = [0] self.data_aug_params['patch_size_for_spatialtransform'] = patch_size_for_spatialtransform def initialize(self, training=True, force_load_plans=False): """ For prediction of test cases just set training=False, this will prevent loading of training data and training batchgenerator initialization :param training: :return: """ maybe_mkdir_p(self.output_folder) if force_load_plans or (self.plans is None): self.load_plans_file() self.process_plans(self.plans) self.setup_DA_params() if training: self.folder_with_preprocessed_data = join(self.dataset_directory, self.plans['data_identifier'] + "_stage%d" % self.stage) self.dl_tr, self.dl_val = self.get_basic_generators() if self.unpack_data: self.print_to_log_file("unpacking dataset") unpack_dataset(self.folder_with_preprocessed_data) self.print_to_log_file("done") else: self.print_to_log_file( "INFO: Not unpacking data! Training may be slow due to that. Pray you are not using 2d or you " "will wait all winter for your model to finish!") self.tr_gen, self.val_gen = get_default_augmentation(self.dl_tr, self.dl_val, self.data_aug_params[ 'patch_size_for_spatialtransform'], self.data_aug_params) self.print_to_log_file("TRAINING KEYS:\n %s" % (str(self.dataset_tr.keys())), also_print_to_console=False) self.print_to_log_file("VALIDATION KEYS:\n %s" % (str(self.dataset_val.keys())), also_print_to_console=False) else: pass self.initialize_network() self.initialize_optimizer_and_scheduler() # assert isinstance(self.network, (SegmentationNetwork, nn.DataParallel)) self.was_initialized = True def initialize_network(self): """ This is specific to the U-Net and must be adapted for other network architectures :return: """ # self.print_to_log_file(self.net_num_pool_op_kernel_sizes) # self.print_to_log_file(self.net_conv_kernel_sizes) net_numpool = len(self.net_num_pool_op_kernel_sizes) if self.threeD: conv_op = nn.Conv3d dropout_op = nn.Dropout3d norm_op = nn.InstanceNorm3d else: conv_op = nn.Conv2d dropout_op = nn.Dropout2d norm_op = nn.InstanceNorm2d norm_op_kwargs = {'eps': 1e-5, 'affine': True} dropout_op_kwargs = {'p': 0, 'inplace': True} net_nonlin = nn.LeakyReLU net_nonlin_kwargs = {'negative_slope': 1e-2, 'inplace': True} self.network = Generic_UNet(self.num_input_channels, self.base_num_features, self.num_classes, net_numpool, self.conv_per_stage, 2, conv_op, norm_op, norm_op_kwargs, dropout_op, dropout_op_kwargs, net_nonlin, net_nonlin_kwargs, False, False, lambda x: x, InitWeights_He(1e-2), self.net_num_pool_op_kernel_sizes, self.net_conv_kernel_sizes, False, True, True) self.network.inference_apply_nonlin = softmax_helper if torch.cuda.is_available(): self.network.cuda() def initialize_optimizer_and_scheduler(self): assert self.network is not None, "self.initialize_network must be called first" self.optimizer = torch.optim.Adam(self.network.parameters(), self.initial_lr, weight_decay=self.weight_decay, amsgrad=True) self.lr_scheduler = lr_scheduler.ReduceLROnPlateau(self.optimizer, mode='min', factor=0.2, patience=self.lr_scheduler_patience, verbose=True, threshold=self.lr_scheduler_eps, threshold_mode="abs") def plot_network_architecture(self): try: from batchgenerators.utilities.file_and_folder_operations import join import hiddenlayer as hl if torch.cuda.is_available(): g = hl.build_graph(self.network, torch.rand((1, self.num_input_channels, *self.patch_size)).cuda(), transforms=None) else: g = hl.build_graph(self.network, torch.rand((1, self.num_input_channels, *self.patch_size)), transforms=None) g.save(join(self.output_folder, "network_architecture.pdf")) del g except Exception as e: self.print_to_log_file("Unable to plot network architecture:") self.print_to_log_file(e) self.print_to_log_file("\nprinting the network instead:\n") self.print_to_log_file(self.network) self.print_to_log_file("\n") finally: if torch.cuda.is_available(): torch.cuda.empty_cache() def run_training(self): dct = OrderedDict() for k in self.__dir__(): if not k.startswith("__"): if not callable(getattr(self, k)): dct[k] = str(getattr(self, k)) del dct['plans'] del dct['intensity_properties'] del dct['dataset'] del dct['dataset_tr'] del dct['dataset_val'] save_json(dct, join(self.output_folder, "debug.json")) import shutil shutil.copy(self.plans_file, join(self.output_folder_base, "plans.pkl")) super(nnUNetTrainer, self).run_training() def load_plans_file(self): """ This is what actually configures the entire experiment. The plans file is generated by experiment planning :return: """ self.plans = load_pickle(self.plans_file) def process_plans(self, plans): if self.stage is None: assert len(list(plans['plans_per_stage'].keys())) == 1, \ "If self.stage is None then there can be only one stage in the plans file. That seems to not be the " \ "case. Please specify which stage of the cascade must be trained" self.stage = list(plans['plans_per_stage'].keys())[0] self.plans = plans stage_plans = self.plans['plans_per_stage'][self.stage] self.batch_size = stage_plans['batch_size'] self.net_pool_per_axis = stage_plans['num_pool_per_axis'] self.patch_size = np.array(stage_plans['patch_size']).astype(int) self.do_dummy_2D_aug = stage_plans['do_dummy_2D_data_aug'] if 'pool_op_kernel_sizes' not in stage_plans.keys(): assert 'num_pool_per_axis' in stage_plans.keys() self.print_to_log_file("WARNING! old plans file with missing pool_op_kernel_sizes. Attempting to fix it...") self.net_num_pool_op_kernel_sizes = [] for i in range(max(self.net_pool_per_axis)): curr = [] for j in self.net_pool_per_axis: if (max(self.net_pool_per_axis) - j) <= i: curr.append(2) else: curr.append(1) self.net_num_pool_op_kernel_sizes.append(curr) else: self.net_num_pool_op_kernel_sizes = stage_plans['pool_op_kernel_sizes'] if 'conv_kernel_sizes' not in stage_plans.keys(): self.print_to_log_file("WARNING! old plans file with missing conv_kernel_sizes. Attempting to fix it...") self.net_conv_kernel_sizes = [[3] * len(self.net_pool_per_axis)] * (max(self.net_pool_per_axis) + 1) else: self.net_conv_kernel_sizes = stage_plans['conv_kernel_sizes'] self.pad_all_sides = None # self.patch_size self.intensity_properties = plans['dataset_properties']['intensityproperties'] self.normalization_schemes = plans['normalization_schemes'] self.base_num_features = plans['base_num_features'] self.num_input_channels = plans['num_modalities'] self.num_classes = plans['num_classes'] + 1 # background is no longer in num_classes self.classes = plans['all_classes'] self.use_mask_for_norm = plans['use_mask_for_norm'] self.only_keep_largest_connected_component = plans['keep_only_largest_region'] self.min_region_size_per_class = plans['min_region_size_per_class'] self.min_size_per_class = None # DONT USE THIS. plans['min_size_per_class'] if plans.get('transpose_forward') is None or plans.get('transpose_backward') is None: print("WARNING! You seem to have data that was preprocessed with a previous version of nnU-Net. " "You should rerun preprocessing. We will proceed and assume that both transpose_foward " "and transpose_backward are [0, 1, 2]. If that is not correct then weird things will happen!") plans['transpose_forward'] = [0, 1, 2] plans['transpose_backward'] = [0, 1, 2] self.transpose_forward = plans['transpose_forward'] self.transpose_backward = plans['transpose_backward'] if len(self.patch_size) == 2: self.threeD = False elif len(self.patch_size) == 3: self.threeD = True else: raise RuntimeError("invalid patch size in plans file: %s" % str(self.patch_size)) if "conv_per_stage" in plans.keys(): # this ha sbeen added to the plans only recently self.conv_per_stage = plans['conv_per_stage'] else: self.conv_per_stage = 2 def load_dataset(self): self.dataset = load_dataset(self.folder_with_preprocessed_data) def get_basic_generators(self): self.load_dataset() self.do_split() if self.threeD: print("3d!") dl_tr = DataLoader3D(self.dataset_tr, self.basic_generator_patch_size, self.patch_size, self.batch_size, False, oversample_foreground_percent=self.oversample_foreground_percent, pad_mode="constant", pad_sides=self.pad_all_sides, memmap_mode='r') dl_val = DataLoader3D(self.dataset_val, self.patch_size, self.patch_size, self.batch_size, False, oversample_foreground_percent=self.oversample_foreground_percent, pad_mode="constant", pad_sides=self.pad_all_sides, memmap_mode='r') else: print("2d!") dl_tr = DataLoader2D(self.dataset_tr, self.basic_generator_patch_size, self.patch_size, self.batch_size, oversample_foreground_percent=self.oversample_foreground_percent, pad_mode="constant", pad_sides=self.pad_all_sides, memmap_mode='r') dl_val = DataLoader2D(self.dataset_val, self.patch_size, self.patch_size, self.batch_size, oversample_foreground_percent=self.oversample_foreground_percent, pad_mode="constant", pad_sides=self.pad_all_sides, memmap_mode='r') return dl_tr, dl_val def preprocess_patient(self, input_files): """ Used to predict new unseen data. Not used for the preprocessing of the training/test data :param input_files: :return: """ from nnunet.training.model_restore import recursive_find_python_class preprocessor_name = self.plans.get('preprocessor_name') if preprocessor_name is None: if self.threeD: preprocessor_name = "GenericPreprocessor" else: preprocessor_name = "PreprocessorFor2D" print("using preprocessor", preprocessor_name) preprocessor_class = recursive_find_python_class([join(nnunet.__path__[0], "preprocessing")], preprocessor_name, current_module="nnunet.preprocessing") assert preprocessor_class is not None, "Could not find preprocessor %s in nnunet.preprocessing" % \ preprocessor_name preprocessor = preprocessor_class(self.normalization_schemes, self.use_mask_for_norm, self.transpose_forward, self.intensity_properties) d, s, properties = preprocessor.preprocess_test_case(input_files, self.plans['plans_per_stage'][self.stage][ 'current_spacing']) return d, s, properties def preprocess_predict_nifti(self, input_files: List[str], output_file: str = None, softmax_ouput_file: str = None, mixed_precision: bool = True) -> None: """ Use this to predict new data :param input_files: :param output_file: :param softmax_ouput_file: :param mixed_precision: :return: """ print("preprocessing...") d, s, properties = self.preprocess_patient(input_files) print("predicting...") pred = self.predict_preprocessed_data_return_seg_and_softmax(d, do_mirroring=self.data_aug_params["do_mirror"], mirror_axes=self.data_aug_params['mirror_axes'], use_sliding_window=True, step_size=0.5, use_gaussian=True, pad_border_mode='constant', pad_kwargs={'constant_values': 0}, verbose=True, all_in_gpu=False, mixed_precision=mixed_precision)[1] pred = pred.transpose([0] + [i + 1 for i in self.transpose_backward]) if 'segmentation_export_params' in self.plans.keys(): force_separate_z = self.plans['segmentation_export_params']['force_separate_z'] interpolation_order = self.plans['segmentation_export_params']['interpolation_order'] interpolation_order_z = self.plans['segmentation_export_params']['interpolation_order_z'] else: force_separate_z = None interpolation_order = 1 interpolation_order_z = 0 print("resampling to original spacing and nifti export...") save_segmentation_nifti_from_softmax(pred, output_file, properties, interpolation_order, self.regions_class_order, None, None, softmax_ouput_file, None, force_separate_z=force_separate_z, interpolation_order_z=interpolation_order_z) print("done") def predict_preprocessed_data_return_seg_and_softmax(self, data: np.ndarray, do_mirroring: bool = True, mirror_axes: Tuple[int] = None, use_sliding_window: bool = True, step_size: float = 0.5, use_gaussian: bool = True, pad_border_mode: str = 'constant', pad_kwargs: dict = None, all_in_gpu: bool = False, verbose: bool = True, mixed_precision: bool = True) -> Tuple[np.ndarray, np.ndarray]: """ :param data: :param do_mirroring: :param mirror_axes: :param use_sliding_window: :param step_size: :param use_gaussian: :param pad_border_mode: :param pad_kwargs: :param all_in_gpu: :param verbose: :return: """ if pad_border_mode == 'constant' and pad_kwargs is None: pad_kwargs = {'constant_values': 0} if do_mirroring and mirror_axes is None: mirror_axes = self.data_aug_params['mirror_axes'] if do_mirroring: assert self.data_aug_params["do_mirror"], "Cannot do mirroring as test time augmentation when training " \ "was done without mirroring" valid = list((SegmentationNetwork, nn.DataParallel)) assert isinstance(self.network, tuple(valid)) current_mode = self.network.training self.network.eval() ret = self.network.predict_3D(data, do_mirroring=do_mirroring, mirror_axes=mirror_axes, use_sliding_window=use_sliding_window, step_size=step_size, patch_size=self.patch_size, regions_class_order=self.regions_class_order, use_gaussian=use_gaussian, pad_border_mode=pad_border_mode, pad_kwargs=pad_kwargs, all_in_gpu=all_in_gpu, verbose=verbose, mixed_precision=mixed_precision) self.network.train(current_mode) return ret def validate(self, do_mirroring: bool = True, use_sliding_window: bool = True, step_size: float = 0.5, save_softmax: bool = True, use_gaussian: bool = True, overwrite: bool = True, validation_folder_name: str = 'validation_raw', debug: bool = False, all_in_gpu: bool = False, segmentation_export_kwargs: dict = None, run_postprocessing_on_folds: bool = True): """ if debug=True then the temporary files generated for postprocessing determination will be kept """ current_mode = self.network.training self.network.eval() assert self.was_initialized, "must initialize, ideally with checkpoint (or train first)" if self.dataset_val is None: self.load_dataset() self.do_split() if segmentation_export_kwargs is None: if 'segmentation_export_params' in self.plans.keys(): force_separate_z = self.plans['segmentation_export_params']['force_separate_z'] interpolation_order = self.plans['segmentation_export_params']['interpolation_order'] interpolation_order_z = self.plans['segmentation_export_params']['interpolation_order_z'] else: force_separate_z = None interpolation_order = 1 interpolation_order_z = 0 else: force_separate_z = segmentation_export_kwargs['force_separate_z'] interpolation_order = segmentation_export_kwargs['interpolation_order'] interpolation_order_z = segmentation_export_kwargs['interpolation_order_z'] # predictions as they come from the network go here output_folder = join(self.output_folder, validation_folder_name) maybe_mkdir_p(output_folder) # this is for debug purposes my_input_args = {'do_mirroring': do_mirroring, 'use_sliding_window': use_sliding_window, 'step_size': step_size, 'save_softmax': save_softmax, 'use_gaussian': use_gaussian, 'overwrite': overwrite, 'validation_folder_name': validation_folder_name, 'debug': debug, 'all_in_gpu': all_in_gpu, 'segmentation_export_kwargs': segmentation_export_kwargs, } save_json(my_input_args, join(output_folder, "validation_args.json")) if do_mirroring: if not self.data_aug_params['do_mirror']: raise RuntimeError("We did not train with mirroring so you cannot do inference with mirroring enabled") mirror_axes = self.data_aug_params['mirror_axes'] else: mirror_axes = () pred_gt_tuples = [] export_pool = Pool(default_num_threads) results = [] for k in self.dataset_val.keys(): properties = load_pickle(self.dataset[k]['properties_file']) fname = properties['list_of_data_files'][0].split("/")[-1][:-12] if overwrite or (not isfile(join(output_folder, fname + ".nii.gz"))) or \ (save_softmax and not isfile(join(output_folder, fname + ".npz"))): data = np.load(self.dataset[k]['data_file'])['data'] print(k, data.shape) data[-1][data[-1] == -1] = 0 softmax_pred = self.predict_preprocessed_data_return_seg_and_softmax(data[:-1], do_mirroring=do_mirroring, mirror_axes=mirror_axes, use_sliding_window=use_sliding_window, step_size=step_size, use_gaussian=use_gaussian, all_in_gpu=all_in_gpu, mixed_precision=self.fp16)[1] softmax_pred = softmax_pred.transpose([0] + [i + 1 for i in self.transpose_backward]) if save_softmax: softmax_fname = join(output_folder, fname + ".npz") else: softmax_fname = None """There is a problem with python process communication that prevents us from communicating obejcts larger than 2 GB between processes (basically when the length of the pickle string that will be sent is communicated by the multiprocessing.Pipe object then the placeholder (\%i I think) does not allow for long enough strings (lol). This could be fixed by changing i to l (for long) but that would require manually patching system python code. We circumvent that problem here by saving softmax_pred to a npy file that will then be read (and finally deleted) by the Process. save_segmentation_nifti_from_softmax can take either filename or np.ndarray and will handle this automatically""" if np.prod(softmax_pred.shape) > (2e9 / 4 * 0.85): # *0.85 just to be save np.save(join(output_folder, fname + ".npy"), softmax_pred) softmax_pred = join(output_folder, fname + ".npy") results.append(export_pool.starmap_async(save_segmentation_nifti_from_softmax, ((softmax_pred, join(output_folder, fname + ".nii.gz"), properties, interpolation_order, self.regions_class_order, None, None, softmax_fname, None, force_separate_z, interpolation_order_z), ) ) ) pred_gt_tuples.append([join(output_folder, fname + ".nii.gz"), join(self.gt_niftis_folder, fname + ".nii.gz")]) _ = [i.get() for i in results] self.print_to_log_file("finished prediction") # evaluate raw predictions self.print_to_log_file("evaluation of raw predictions") task = self.dataset_directory.split("/")[-1] job_name = self.experiment_name _ = aggregate_scores(pred_gt_tuples, labels=list(range(self.num_classes)), json_output_file=join(output_folder, "summary.json"), json_name=job_name + " val tiled %s" % (str(use_sliding_window)), json_author="Fabian", json_task=task, num_threads=default_num_threads) if run_postprocessing_on_folds: # in the old nnunet we would stop here. Now we add a postprocessing. This postprocessing can remove everything # except the largest connected component for each class. To see if this improves results, we do this for all # classes and then rerun the evaluation. Those classes for which this resulted in an improved dice score will # have this applied during inference as well self.print_to_log_file("determining postprocessing") determine_postprocessing(self.output_folder, self.gt_niftis_folder, validation_folder_name, final_subf_name=validation_folder_name + "_postprocessed", debug=debug) # after this the final predictions for the vlaidation set can be found in validation_folder_name_base + "_postprocessed" # They are always in that folder, even if no postprocessing as applied! # detemining postprocesing on a per-fold basis may be OK for this fold but what if another fold finds another # postprocesing to be better? In this case we need to consolidate. At the time the consolidation is going to be # done we won't know what self.gt_niftis_folder was, so now we copy all the niftis into a separate folder to # be used later gt_nifti_folder = join(self.output_folder_base, "gt_niftis") maybe_mkdir_p(gt_nifti_folder) for f in subfiles(self.gt_niftis_folder, suffix=".nii.gz"): success = False attempts = 0 e = None while not success and attempts < 10: try: shutil.copy(f, gt_nifti_folder) success = True except OSError as e: attempts += 1 sleep(1) if not success: print("Could not copy gt nifti file %s into folder %s" % (f, gt_nifti_folder)) if e is not None: raise e self.network.train(current_mode) def run_online_evaluation(self, output, target): with torch.no_grad(): num_classes = output.shape[1] output_softmax = softmax_helper(output) output_seg = output_softmax.argmax(1) target = target[:, 0] axes = tuple(range(1, len(target.shape))) tp_hard = torch.zeros((target.shape[0], num_classes - 1)).to(output_seg.device.index) fp_hard = torch.zeros((target.shape[0], num_classes - 1)).to(output_seg.device.index) fn_hard = torch.zeros((target.shape[0], num_classes - 1)).to(output_seg.device.index) for c in range(1, num_classes): tp_hard[:, c - 1] = sum_tensor((output_seg == c).float() * (target == c).float(), axes=axes) fp_hard[:, c - 1] = sum_tensor((output_seg == c).float() * (target != c).float(), axes=axes) fn_hard[:, c - 1] = sum_tensor((output_seg != c).float() * (target == c).float(), axes=axes) tp_hard = tp_hard.sum(0, keepdim=False).detach().cpu().numpy() fp_hard = fp_hard.sum(0, keepdim=False).detach().cpu().numpy() fn_hard = fn_hard.sum(0, keepdim=False).detach().cpu().numpy() self.online_eval_foreground_dc.append(list((2 * tp_hard) / (2 * tp_hard + fp_hard + fn_hard + 1e-8))) self.online_eval_tp.append(list(tp_hard)) self.online_eval_fp.append(list(fp_hard)) self.online_eval_fn.append(list(fn_hard)) def finish_online_evaluation(self): self.online_eval_tp = np.sum(self.online_eval_tp, 0) self.online_eval_fp = np.sum(self.online_eval_fp, 0) self.online_eval_fn = np.sum(self.online_eval_fn, 0) global_dc_per_class = [i for i in [2 * i / (2 * i + j + k) for i, j, k in zip(self.online_eval_tp, self.online_eval_fp, self.online_eval_fn)] if not np.isnan(i)] self.all_val_eval_metrics.append(np.mean(global_dc_per_class)) self.print_to_log_file("Average global foreground Dice:", str(global_dc_per_class)) self.print_to_log_file("(interpret this as an estimate for the Dice of the different classes. This is not " "exact.)") self.online_eval_foreground_dc = [] self.online_eval_tp = [] self.online_eval_fp = [] self.online_eval_fn = [] def save_checkpoint(self, fname, save_optimizer=True): super(nnUNetTrainer, self).save_checkpoint(fname, save_optimizer) info = OrderedDict() info['init'] = self.init_args info['name'] = self.__class__.__name__ info['class'] = str(self.__class__) info['plans'] = self.plans write_pickle(info, fname + ".pkl")
class nnUNetTrainer(NetworkTrainer): def __init__(self, plans_file, fold, output_folder=None, dataset_directory=None, batch_dice=True, stage=None, unpack_data=True, deterministic=True, fp16=False): """ :param deterministic: :param fold: can be either [0 ... 5) for cross-validation, 'all' to train on all available training data or None if you wish to load some checkpoint and do inference only :param plans_file: the pkl file generated by preprocessing. This file will determine all design choices :param subfolder_with_preprocessed_data: must be a subfolder of dataset_directory (just the name of the folder, not the entire path). This is where the preprocessed data lies that will be used for network training. We made this explicitly available so that differently preprocessed data can coexist and the user can choose what to use. Can be None if you are doing inference only. :param output_folder: where to store parameters, plot progress and to the validation :param dataset_directory: the parent directory in which the preprocessed Task data is stored. This is required because the split information is stored in this directory. For running prediction only this input is not required and may be set to None :param batch_dice: compute dice loss for each sample and average over all samples in the batch or pretend the batch is a pseudo volume? :param stage: The plans file may contain several stages (used for lowres / highres / pyramid). Stage must be specified for training: if stage 1 exists then stage 1 is the high resolution stage, otherwise it's 0 :param unpack_data: if False, npz preprocessed data will not be unpacked to npy. This consumes less space but is considerably slower! Running unpack_data=False with 2d should never be done! IMPORTANT: If you inherit from nnUNetTrainer and the init args change then you need to redefine self.init_args in your init accordingly. Otherwise checkpoints won't load properly! """ super(nnUNetTrainer, self).__init__(deterministic, fp16) self.unpack_data = unpack_data self.init_args = (plans_file, fold, output_folder, dataset_directory, batch_dice, stage, unpack_data, deterministic, fp16) # set through arguments from init self.stage = stage self.experiment_name = self.__class__.__name__ self.plans_file = plans_file self.output_folder = output_folder self.dataset_directory = dataset_directory self.output_folder_base = self.output_folder self.fold = fold self.plans = None # if we are running inference only then the self.dataset_directory is set (due to checkpoint loading) but it # irrelevant if self.dataset_directory is not None and isdir( self.dataset_directory): self.gt_niftis_folder = join(self.dataset_directory, "gt_segmentations") else: self.gt_niftis_folder = None self.folder_with_preprocessed_data = None # set in self.initialize() self.dl_tr = self.dl_val = None self.num_input_channels = self.num_classes = self.net_pool_per_axis = self.patch_size = self.batch_size = \ self.threeD = self.base_num_features = self.intensity_properties = self.normalization_schemes = \ self.net_num_pool_op_kernel_sizes = self.net_conv_kernel_sizes = None # loaded automatically from plans_file self.basic_generator_patch_size = self.data_aug_params = None self.batch_dice = batch_dice self.loss = DC_and_CE_loss( { 'batch_dice': self.batch_dice, 'smooth': 1e-5, 'smooth_in_nom': True, 'do_bg': False, 'rebalance_weights': None, 'background_weight': 1 }, OrderedDict()) self.online_eval_foreground_dc = [] self.online_eval_tp = [] self.online_eval_fp = [] self.online_eval_fn = [] self.classes = self.do_dummy_2D_aug = self.use_mask_for_norm = self.only_keep_largest_connected_component = \ self.min_region_size_per_class = self.min_size_per_class = None self.inference_pad_border_mode = "constant" self.inference_pad_kwargs = {'constant_values': 0} self.update_fold(fold) self.pad_all_sides = None self.lr_scheduler_eps = 1e-3 self.lr_scheduler_patience = 30 self.initial_lr = 3e-4 self.weight_decay = 3e-5 self.oversample_foreground_percent = 0.33 def update_fold(self, fold): """ used to swap between folds for inference (ensemble of models from cross-validation) DO NOT USE DURING TRAINING AS THIS WILL NOT UPDATE THE DATASET SPLIT AND THE DATA AUGMENTATION GENERATORS :param fold: :return: """ if fold is not None: if isinstance(fold, str): assert fold == "all", "if self.fold is a string then it must be \'all\'" if self.output_folder.endswith("%s" % str(self.fold)): self.output_folder = self.output_folder_base self.output_folder = join(self.output_folder, "%s" % str(fold)) else: if self.output_folder.endswith("fold_%s" % str(self.fold)): self.output_folder = self.output_folder_base self.output_folder = join(self.output_folder, "fold_%s" % str(fold)) self.fold = fold def setup_DA_params(self): if self.threeD: self.data_aug_params = default_3D_augmentation_params if self.do_dummy_2D_aug: self.data_aug_params["dummy_2D"] = True self.print_to_log_file("Using dummy2d data augmentation") self.data_aug_params["elastic_deform_alpha"] = \ default_2D_augmentation_params["elastic_deform_alpha"] self.data_aug_params["elastic_deform_sigma"] = \ default_2D_augmentation_params["elastic_deform_sigma"] self.data_aug_params[ "rotation_x"] = default_2D_augmentation_params[ "rotation_x"] else: self.do_dummy_2D_aug = False if max(self.patch_size) / min(self.patch_size) > 1.5: default_2D_augmentation_params['rotation_x'] = (-15. / 360 * 2. * np.pi, 15. / 360 * 2. * np.pi) self.data_aug_params = default_2D_augmentation_params self.data_aug_params[ "mask_was_used_for_normalization"] = self.use_mask_for_norm if self.do_dummy_2D_aug: self.basic_generator_patch_size = get_patch_size( self.patch_size[1:], self.data_aug_params['rotation_x'], self.data_aug_params['rotation_y'], self.data_aug_params['rotation_z'], self.data_aug_params['scale_range']) self.basic_generator_patch_size = np.array( [self.patch_size[0]] + list(self.basic_generator_patch_size)) patch_size_for_spatialtransform = self.patch_size[1:] else: self.basic_generator_patch_size = get_patch_size( self.patch_size, self.data_aug_params['rotation_x'], self.data_aug_params['rotation_y'], self.data_aug_params['rotation_z'], self.data_aug_params['scale_range']) patch_size_for_spatialtransform = self.patch_size self.data_aug_params['selected_seg_channels'] = [0] self.data_aug_params[ 'patch_size_for_spatialtransform'] = patch_size_for_spatialtransform def initialize(self, training=True, force_load_plans=False): """ For prediction of test cases just set training=False, this will prevent loading of training data and training batchgenerator initialization :param training: :return: """ maybe_mkdir_p(self.output_folder) if force_load_plans or (self.plans is None): self.load_plans_file() self.process_plans(self.plans) self.setup_DA_params() self.folder_with_preprocessed_data = join( self.dataset_directory, self.plans['data_identifier'] + "_stage%d" % self.stage) if training: self.dl_tr, self.dl_val = self.get_basic_generators() if self.unpack_data: self.print_to_log_file("unpacking dataset") unpack_dataset(self.folder_with_preprocessed_data) self.print_to_log_file("done") else: self.print_to_log_file( "INFO: Not unpacking data! Training may be slow due to that. Pray you are not using 2d or you " "will wait all winter for your model to finish!") self.tr_gen, self.val_gen = get_default_augmentation( self.dl_tr, self.dl_val, self.data_aug_params['patch_size_for_spatialtransform'], self.data_aug_params) self.print_to_log_file("TRAINING KEYS:\n %s" % (str(self.dataset_tr.keys())), also_print_to_console=False) self.print_to_log_file("VALIDATION KEYS:\n %s" % (str(self.dataset_val.keys())), also_print_to_console=False) else: pass self.initialize_network_optimizer_and_scheduler() #assert isinstance(self.network, (SegmentationNetwork, nn.DataParallel)) self.was_initialized = True def initialize_network_optimizer_and_scheduler(self): """ This is specific to the U-Net and must be adapted for other network architectures :return: """ #self.print_to_log_file(self.net_num_pool_op_kernel_sizes) #self.print_to_log_file(self.net_conv_kernel_sizes) net_numpool = len(self.net_num_pool_op_kernel_sizes) if self.threeD: conv_op = nn.Conv3d dropout_op = nn.Dropout3d norm_op = nn.InstanceNorm3d else: conv_op = nn.Conv2d dropout_op = nn.Dropout2d norm_op = nn.InstanceNorm2d norm_op_kwargs = {'eps': 1e-5, 'affine': True} dropout_op_kwargs = {'p': 0, 'inplace': True} net_nonlin = nn.LeakyReLU net_nonlin_kwargs = {'negative_slope': 1e-2, 'inplace': True} self.network = Generic_UNet( self.num_input_channels, self.base_num_features, self.num_classes, net_numpool, 2, 2, conv_op, norm_op, norm_op_kwargs, dropout_op, dropout_op_kwargs, net_nonlin, net_nonlin_kwargs, False, False, lambda x: x, InitWeights_He(1e-2), self.net_num_pool_op_kernel_sizes, self.net_conv_kernel_sizes, False, True, True) self.optimizer = torch.optim.Adam(self.network.parameters(), self.initial_lr, weight_decay=self.weight_decay, amsgrad=True) self.lr_scheduler = lr_scheduler.ReduceLROnPlateau( self.optimizer, mode='min', factor=0.2, patience=self.lr_scheduler_patience, verbose=True, threshold=self.lr_scheduler_eps, threshold_mode="abs") self.network.cuda() self.network.inference_apply_nonlin = softmax_helper def run_training(self): dct = OrderedDict() for k in self.__dir__(): if not k.startswith("__"): if not callable(getattr(self, k)): dct[k] = str(getattr(self, k)) del dct['plans'] del dct['intensity_properties'] del dct['dataset'] del dct['dataset_tr'] del dct['dataset_val'] save_json(dct, join(self.output_folder, "debug.json")) import shutil shutil.copy(self.plans_file, join(self.output_folder_base, "plans.pkl")) super(nnUNetTrainer, self).run_training() def load_plans_file(self): """ This is what actually configures the entire experiment. The plans file is generated by experiment planning :return: """ self.plans = load_pickle(self.plans_file) def process_plans(self, plans): if self.stage is None: assert len(list(plans['plans_per_stage'].keys())) == 1, \ "If self.stage is None then there can be only one stage in the plans file. That seems to not be the " \ "case. Please specify which stage of the cascade must be trained" self.stage = list(plans['plans_per_stage'].keys())[0] self.plans = plans stage_plans = self.plans['plans_per_stage'][self.stage] self.batch_size = stage_plans['batch_size'] self.net_pool_per_axis = stage_plans['num_pool_per_axis'] self.patch_size = np.array(stage_plans['patch_size']).astype(int) self.do_dummy_2D_aug = stage_plans['do_dummy_2D_data_aug'] self.net_num_pool_op_kernel_sizes = stage_plans['pool_op_kernel_sizes'] self.net_conv_kernel_sizes = stage_plans['conv_kernel_sizes'] self.pad_all_sides = None # self.patch_size self.intensity_properties = plans['dataset_properties'][ 'intensityproperties'] self.normalization_schemes = plans['normalization_schemes'] self.base_num_features = plans['base_num_features'] self.num_input_channels = plans['num_modalities'] self.num_classes = plans[ 'num_classes'] + 1 # background is no longer in num_classes self.classes = plans['all_classes'] self.use_mask_for_norm = plans['use_mask_for_norm'] self.only_keep_largest_connected_component = plans[ 'keep_only_largest_region'] self.min_region_size_per_class = plans['min_region_size_per_class'] self.min_size_per_class = None # DONT USE THIS. plans['min_size_per_class'] if len(self.patch_size) == 2: self.threeD = False elif len(self.patch_size) == 3: self.threeD = True else: raise RuntimeError("invalid patch size in plans file: %s" % str(self.patch_size)) def load_dataset(self): self.dataset = load_dataset(self.folder_with_preprocessed_data) def get_basic_generators(self): self.load_dataset() self.do_split() if self.threeD: dl_tr = DataLoader3D(self.dataset_tr, self.basic_generator_patch_size, self.patch_size, self.batch_size, False, oversample_foreground_percent=self. oversample_foreground_percent, pad_mode="constant", pad_sides=self.pad_all_sides) dl_val = DataLoader3D(self.dataset_val, self.patch_size, self.patch_size, self.batch_size, False, oversample_foreground_percent=self. oversample_foreground_percent, pad_mode="constant", pad_sides=self.pad_all_sides) else: dl_tr = DataLoader2D(self.dataset_tr, self.basic_generator_patch_size, self.patch_size, self.batch_size, transpose=self.plans.get('transpose_forward'), oversample_foreground_percent=self. oversample_foreground_percent, pad_mode="constant", pad_sides=self.pad_all_sides) dl_val = DataLoader2D( self.dataset_val, self.patch_size, self.patch_size, self.batch_size, transpose=self.plans.get('transpose_forward'), oversample_foreground_percent=self. oversample_foreground_percent, pad_mode="constant", pad_sides=self.pad_all_sides) return dl_tr, dl_val def preprocess_patient(self, input_files): """ Used to predict new unseen data. Not used for the preprocessing of the training/test data :param input_files: :return: """ from nnunet.preprocessing.preprocessing import GenericPreprocessor, PreprocessorFor2D if self.threeD: preprocessor = GenericPreprocessor(self.normalization_schemes, self.use_mask_for_norm, self.intensity_properties) else: preprocessor = PreprocessorFor2D(self.normalization_schemes, self.use_mask_for_norm, self.intensity_properties) d, s, properties = preprocessor.preprocess_test_case( input_files, self.plans['plans_per_stage'][self.stage]['current_spacing']) return d, s, properties def preprocess_predict_nifti(self, input_files, output_file=None, softmax_ouput_file=None): """ Use this to predict new data :param input_files: :param output_file: :param softmax_ouput_file: :return: """ print("preprocessing...") d, s, properties = self.preprocess_patient(input_files) print("predicting...") pred = self.predict_preprocessed_data_return_softmax( d, True, 1, False, 1, (0, 1, 2), True, True, 2, self.patch_size, True) # TODO use da params for mirror print("resampling to original spacing and nifti export...") save_segmentation_nifti_from_softmax(pred, output_file, properties, 3, None, None, None, softmax_ouput_file, None) print("done") def predict_preprocessed_data_return_softmax(self, data, do_mirroring, num_repeats, use_train_mode, batch_size, mirror_axes, tiled, tile_in_z, step, min_size, use_gaussian): """ Don't use this. If you need softmax output, use preprocess_predict_nifti and set softmax_output_file. :param data: :param do_mirroring: :param num_repeats: :param use_train_mode: :param batch_size: :param mirror_axes: :param tiled: :param tile_in_z: :param step: :param min_size: :param use_gaussian: :param use_temporal: :return: """ assert isinstance(self.network, (SegmentationNetwork, nn.DataParallel)) return self.network.predict_3D( data, do_mirroring, num_repeats, use_train_mode, batch_size, mirror_axes, tiled, tile_in_z, step, min_size, use_gaussian=use_gaussian, pad_border_mode=self.inference_pad_border_mode, pad_kwargs=self.inference_pad_kwargs)[2] def validate(self, do_mirroring=True, use_train_mode=False, tiled=True, step=2, save_softmax=True, use_gaussian=True, compute_global_dice=True, override=True, validation_folder_name='validation'): """ 2018_12_05: I added global accumulation of TP, FP and FN for the validation in here. This is because I believe that selecting models is easier when computing the Dice globally instead of independently for each case and then averaging over cases. The Lung dataset in particular is very unstable because of the small size of the Lung Lesions. My theory is that even though the global Dice is different than the acutal target metric it is still a good enough substitute that allows us to get a lot more stable results when rerunning the same experiment twice. FYI: computer vision community uses the global jaccard for the evaluation of Cityscapes etc, not the per-image jaccard averaged over images. The reason I am accumulating TP/FP/FN here and not from the nifti files (which are used by our Evaluator) is that all predictions made here will have identical voxel spacing whereas voxel spacings in the nifti files will be different (which we could compensate for by using the volume per voxel but that would require the evaluator to understand spacings which is does not at this point) :param do_mirroring: :param use_train_mode: :param mirror_axes: :param tiled: :param tile_in_z: :param step: :param use_nifti: :param save_softmax: :param use_gaussian: :param use_temporal_models: :return: """ assert self.was_initialized, "must initialize, ideally with checkpoint (or train first)" if self.dataset_val is None: self.load_dataset() self.do_split() output_folder = join(self.output_folder, validation_folder_name) maybe_mkdir_p(output_folder) if do_mirroring: mirror_axes = self.data_aug_params['mirror_axes'] else: mirror_axes = () pred_gt_tuples = [] export_pool = Pool(4) results = [] global_tp = OrderedDict() global_fp = OrderedDict() global_fn = OrderedDict() for k in self.dataset_val.keys(): print(k) properties = self.dataset[k]['properties'] fname = properties['list_of_data_files'][0].split("/")[-1][:-12] if override or (not isfile(join(output_folder, fname + ".nii.gz"))): data = np.load(self.dataset[k]['data_file'])['data'] transpose_forward = self.plans.get('transpose_forward') if transpose_forward is not None: data = data.transpose([0] + [i + 1 for i in transpose_forward]) print(k, data.shape) data[-1][data[-1] == -1] = 0 softmax_pred = self.predict_preprocessed_data_return_softmax( data[:-1], do_mirroring, 1, use_train_mode, 1, mirror_axes, tiled, True, step, self.patch_size, use_gaussian=use_gaussian) if compute_global_dice: predicted_segmentation = softmax_pred.argmax(0) gt_segmentation = data[-1] labels = properties['classes'] labels = [int(i) for i in labels if i > 0] for l in labels: if l not in global_fn.keys(): global_fn[l] = 0 if l not in global_fp.keys(): global_fp[l] = 0 if l not in global_tp.keys(): global_tp[l] = 0 conf = ConfusionMatrix( (predicted_segmentation == l).astype(int), (gt_segmentation == l).astype(int)) conf.compute() global_fn[l] += conf.fn global_fp[l] += conf.fp global_tp[l] += conf.tp if transpose_forward is not None: transpose_backward = self.plans.get('transpose_backward') softmax_pred = softmax_pred.transpose( [0] + [i + 1 for i in transpose_backward]) if save_softmax: softmax_fname = join(output_folder, fname + ".npz") else: softmax_fname = None """There is a problem with python process communication that prevents us from communicating obejcts larger than 2 GB between processes (basically when the length of the pickle string that will be sent is communicated by the multiprocessing.Pipe object then the placeholder (\%i I think) does not allow for long enough strings (lol). This could be fixed by changing i to l (for long) but that would require manually patching system python code. We circumvent that problem here by saving softmax_pred to a npy file that will then be read (and finally deleted) by the Process. save_segmentation_nifti_from_softmax can take either filename or np.ndarray and will handle this automatically""" if np.prod(softmax_pred.shape) > (2e9 / 4 * 0.9): # *0.9 just to be save np.save(join(output_folder, fname + ".npy"), softmax_pred) softmax_pred = join(output_folder, fname + ".npy") results.append( export_pool.starmap_async( save_segmentation_nifti_from_softmax, ((softmax_pred, join(output_folder, fname + ".nii.gz"), properties, 3, None, None, None, softmax_fname, None), ))) #save_segmentation_nifti_from_softmax(softmax_pred, join(output_folder, fname + ".nii.gz"), # properties, 3, None, None, # None, # softmax_fname, # None) pred_gt_tuples.append([ join(output_folder, fname + ".nii.gz"), join(self.gt_niftis_folder, fname + ".nii.gz") ]) _ = [i.get() for i in results] print("finished prediction, now evaluating...") task = self.dataset_directory.split("/")[-1] job_name = self.experiment_name _ = aggregate_scores( pred_gt_tuples, labels=list(range(self.num_classes)), json_output_file=join(output_folder, "summary.json"), json_name=job_name + " val tiled %s" % (str(tiled)), json_author="Fabian", json_task=task, num_threads=3) if compute_global_dice: global_dice = OrderedDict() all_labels = list(global_fn.keys()) for l in all_labels: global_dice[int(l)] = float( 2 * global_tp[l] / (2 * global_tp[l] + global_fn[l] + global_fp[l])) write_json(global_dice, join(output_folder, "global_dice.json")) def run_online_evaluation(self, output, target): with torch.no_grad(): num_classes = output.shape[1] output_softmax = softmax_helper(output) output_seg = output_softmax.argmax(1) target = target[:, 0] axes = tuple(range(1, len(target.shape))) tp_hard = torch.zeros( (target.shape[0], num_classes - 1)).to(output_seg.device.index) fp_hard = torch.zeros( (target.shape[0], num_classes - 1)).to(output_seg.device.index) fn_hard = torch.zeros( (target.shape[0], num_classes - 1)).to(output_seg.device.index) for c in range(1, num_classes): tp_hard[:, c - 1] = sum_tensor( (output_seg == c).float() * (target == c).float(), axes=axes) fp_hard[:, c - 1] = sum_tensor( (output_seg == c).float() * (target != c).float(), axes=axes) fn_hard[:, c - 1] = sum_tensor( (output_seg != c).float() * (target == c).float(), axes=axes) tp_hard = tp_hard.sum(0, keepdim=False).detach().cpu().numpy() fp_hard = fp_hard.sum(0, keepdim=False).detach().cpu().numpy() fn_hard = fn_hard.sum(0, keepdim=False).detach().cpu().numpy() self.online_eval_foreground_dc.append( list((2 * tp_hard) / (2 * tp_hard + fp_hard + fn_hard + 1e-8))) self.online_eval_tp.append(list(tp_hard)) self.online_eval_fp.append(list(fp_hard)) self.online_eval_fn.append(list(fn_hard)) def finish_online_evaluation(self): self.online_eval_tp = np.sum(self.online_eval_tp, 0) self.online_eval_fp = np.sum(self.online_eval_fp, 0) self.online_eval_fn = np.sum(self.online_eval_fn, 0) global_dc_per_class = [ i for i in [ 2 * i / (2 * i + j + k) for i, j, k in zip(self.online_eval_tp, self.online_eval_fp, self.online_eval_fn) ] if not np.isnan(i) ] self.all_val_eval_metrics.append(np.mean(global_dc_per_class)) self.print_to_log_file("Val glob dc per class:", str(global_dc_per_class)) self.online_eval_foreground_dc = [] self.online_eval_tp = [] self.online_eval_fp = [] self.online_eval_fn = [] def save_checkpoint(self, fname, save_optimizer=True): super(nnUNetTrainer, self).save_checkpoint(fname, save_optimizer) info = OrderedDict() info['init'] = self.init_args info['name'] = self.__class__.__name__ info['class'] = str(self.__class__) info['plans'] = self.plans write_pickle(info, fname + ".pkl")