コード例 #1
0
 def test_fit_point2_vline(self):
     reference_points = [[0, -2], [0, 4]]
     target_distances = [2, 4]
     expected = [0, 0]
     point, t = fit_point(reference_points, target_distances)
     self.assertTrue(
         math.isclose(distance(point, expected), 0, abs_tol=0.0001), point)
     self.assertLess(t, SMALL_MAX_T)
コード例 #2
0
 def test_fit_point1_d0(self):
     reference_point = [5, 3]
     target_distance = 0
     point, t = fit_point([reference_point], [target_distance])
     self.assertTrue(
         math.isclose(distance(point, reference_point), 0, abs_tol=.0001),
         point)
     self.assertLess(t, SMALL_MAX_T)
コード例 #3
0
 def test_fit_point3(self):
     reference_points = [[math.sqrt(8), math.sqrt(8)], [0, -4], [-4, 0]]
     target_distances = [4, 4, 4]
     expected = [0, 0]
     point, t = fit_point(reference_points,
                          target_distances,
                          visualize=True)
     self.assertTrue(
         math.isclose(distance(point, expected), 0, abs_tol=0.0001), point)
     self.assertLess(t, SMALL_MAX_T)
コード例 #4
0
 def test_fit_point2_hline(self):
     reference_points = [[-1, 0], [5, 0]]
     target_distances = [2, 4]
     expected = [1, 0]
     point, t = fit_point(reference_points,
                          target_distances,
                          visualize=True)
     self.assertTrue(
         math.isclose(distance(point, expected), 0, abs_tol=0.0001), point)
     self.assertLess(t, SMALL_MAX_T)
コード例 #5
0
    def test_fit_point(self):
        reference_points_1 = [[0, -2, 3], [1, 0, -6], [2, 4, 9], [3, 6, -12]]
        #reference_points_1 = [[0, -2, 3], [1, 0, -6], [0, 4, 9], [3, 6, -12]]
        reference_points_2 = [[3, -2, 3], [2, 0, -6], [1, 4, 9], [0, 6, -12]]
        target_distances_1 = [5, 4, 3, 2]
        target_distances_2 = [1, 2, 3, 4]
        #target_distances_2 = [1, 1, 4, 3]

        point_11, t_11 = fit_point(reference_points_1,
                                   target_distances_1,
                                   visualize=True)
        self.assertTrue(all([not math.isnan(p) for p in point_11]), point_11)
        self.assertLess(t_11, BIG_MAX_T)

        point_12, t_12 = fit_point(reference_points_1,
                                   target_distances_2,
                                   visualize=True)
        self.assertTrue(all([not math.isnan(p) for p in point_12]), point_12)
        self.assertLess(t_12, BIG_MAX_T)

        point_21, t_21 = fit_point(reference_points_2,
                                   target_distances_1,
                                   visualize=True)
        self.assertTrue(all([not math.isnan(p) for p in point_21]), point_21)
        self.assertLess(t_21, BIG_MAX_T)

        point_22, t_22 = fit_point(reference_points_2,
                                   target_distances_2,
                                   visualize=True)
        self.assertTrue(all([not math.isnan(p) for p in point_22]), point_22)
        self.assertLess(t_22, BIG_MAX_T)

        self.assertGreater(distance(point_11, point_12), 1)
        self.assertGreater(distance(point_11, point_21), 1)
        self.assertGreater(distance(point_11, point_22), 1)

        self.assertGreater(distance(point_12, point_21), 1)
        self.assertGreater(distance(point_12, point_22), .75)

        self.assertGreater(distance(point_21, point_22), 1)
コード例 #6
0
    def _fit_top_k(self, predictions):
        ## Fitting across top-k points.
        colour_probabilities = {}

        for output, probability in predictions.items():
            self.mapped_output(output)
            colour = self.output_colour(output)

            if colour not in colour_probabilities:
                colour_probabilities[colour] = 0

            colour_probabilities[colour] += probability

        colour, probability = max(colour_probabilities.items(),
                                  key=lambda item: item[1])
        total = sum(colour_probabilities.values())
        fit = geometry.fit_proportion((colour, [255, 255, 255]),
                                      (total - probability, probability))
        return "rgb(%d, %d, %d)" % tuple([round(i) for i in fit])
        maximum_distance = None

        for pair in itertools.combinations(
            [colour for colour in colour_probabilities.keys()], 2):
            distance = geometry.distance(pair[0], pair[1])

            if maximum_distance is None or distance > maximum_distance:
                maximum_distance = distance

        inverted = [
            item for item in mlbase.regmax(
                {c: 1.0 - p
                 for c, p in colour_probabilities.items()}).items()
        ]
        fit, _ = geometry.fit_point(
            [item[0] for item in inverted],
            [item[1] * maximum_distance for item in inverted])
        return "rgb(%d, %d, %d)" % tuple([round(i) for i in fit])
コード例 #7
0
}

#for word, probability in predictions[key].items():
#    colour = self.colour_embeddings[word]
#
#    if colour not in interpolation_points:
#        interpolation_points[colour] = (word, probability)
#    else:
#        if interpolation_points[colour][1] < probability:
#            interpolation_points[colour] = (word, probability)
#
if len(interpolation_points) == 1:
    colours[key] = "rgb(%d, %d, %d)" % next(iter(interpolation_points.keys()))
else:
    maximum_distance = None

    for pair in itertools.combinations([colour for colour in interpolation_points.keys()], 2):
        distance = geometry.distance(pair[0], pair[1])

        if maximum_distance is None or distance > maximum_distance:
            maximum_distance = distance

    lowest_probability = min([p for w, p in interpolation_points.values()])
    highest_probability = max([p for w, p in interpolation_points.values()])
    maximum_domain = highest_probability + lowest_probability
    prediction_distances = [(w, maximum_distance + (-p * maximum_distance / maximum_domain)) for w, p in interpolation_points.values()]
    fit, _ = geometry.fit_point([colour_embeddings[item[0]] for item in prediction_distances], [item[1] for item in prediction_distances], epsilon=0.1, visualize=False)
    print("rgb(%d, %d, %d)" % tuple([round(i) for i in fit]))