def p_funcall_expr(p): """expr : expr LPAREN expr_list RPAREN | expr LPAREN RPAREN """ if (len(p) == 5 and len(p[3]) == 1 and p[3][0].__class__ is node.expr and p[3][0].op == ":" and not p[3][0].args): # foo(:) => ravel(foo) p[0] = node.funcall(func_expr=node.ident("ravel"), args=node.expr_list([p[1]])) else: args = node.expr_list() if len(p) == 4 else p[3] assert isinstance(args, node.expr_list) p[0] = node.funcall(func_expr=p[1], args=args)
def p_funcall_expr(p): """expr : expr LPAREN expr_list RPAREN | expr LPAREN RPAREN """ if (len(p) == 5 and len(p[3]) == 1 and p[3][0].__class__ is node.expr and p[3][0].op == ":" and not p[3][0].args): # foo(:) => ravel(foo) p[0] = node.funcall( func_expr=node.ident("ravel"), args=node.expr_list([p[1]])) else: args = node.expr_list() if len(p) == 4 else p[3] assert isinstance(args, node.expr_list) p[0] = node.funcall(func_expr=p[1], args=args)
def let_statement(u): """ If LHS is a plain variable, and RHS is a matrix enclosed in square brackets, replace the matrix expr with a funcall. """ if u.__class__ is node.let: if (u.ret.__class__ is node.ident and u.args.__class__ is node.matrix): u.args = node.funcall(func_expr=node.ident("matlabarray"), args=node.expr_list([u.args]))
def p_command(p): """ command : ident args SEMI """ # if p[1].name == "load": # # "load filename x" ==> "x=load(filename)" # # "load filename x y z" ==> "(x,y,z)=load(filename)" # ret=node.expr_list([node.ident(t.value) for t in p[2][1:]]) # p[0] = node.funcall(func_expr=p[1], # args=node.expr_list(p[2]), # ret=ret) # else: p[0] = node.funcall(p[1],p[2])
def p_command(p): """ command : ident args SEMI """ # if p[1].name == "load": # # "load filename x" ==> "x=load(filename)" # # "load filename x y z" ==> "(x,y,z)=load(filename)" # ret=node.expr_list([node.ident(t.value) for t in p[2][1:]]) # p[0] = node.funcall(func_expr=p[1], # args=node.expr_list(p[2]), # ret=ret) # else: p[0] = node.funcall(p[1], p[2])
def resolve(t, symtab=None, fp=None, func_name=None): if symtab is None: symtab = {} do_resolve(t, symtab) G = as_networkx(t) #import pdb;pdb.set_trace() for n in G.nodes(): u = G.node[n]["ident"] if u.props: pass elif G.out_edges(n) and G.in_edges(n): u.props = "U" # upd #print u.name, u.lineno, u.column elif G.in_edges(n): u.props = "D" # def elif G.out_edges(n): u.props = "R" # ref else: u.props = "F" # ??? G.node[n]["label"] = "%s\\n%s" % (n, u.props) for u in node.postorder(t): #if u.__class__ is node.func_decl: # u.ident.name += "_" if u.__class__ is node.funcall: try: if u.func_expr.props in "UR": # upd,ref u.__class__ = node.arrayref #else: # u.func_expr.name += "_" except: pass for u in node.postorder(t): if u.__class__ in (node.arrayref, node.cellarrayref): for i, v in enumerate(u.args): if v.__class__ is node.expr and v.op == ":": v.op = "::" # for w in node.postorder(v): # if w.__class__ is node.expr and w.op == "end": # w.args[0] = u.func_expr # w.args[1] = node.number(i) for u in node.postorder(t): if u.__class__ is node.let: if (u.ret.__class__ is node.ident and u.args.__class__ is node.matrix): u.args = node.funcall(func_expr=node.ident("matlabarray"), args=node.expr_list([u.args])) H = nx.connected_components(G.to_undirected()) for i, component in enumerate(H): for nodename in component: if G.node[nodename]["ident"].props == "R": has_update = 1 break else: has_update = 0 if has_update: for nodename in component: G.node[nodename]["ident"].props += "S" # sparse #S = G.subgraph(nbunch) #print S.edges() return G
def p_expr2(p): """expr2 : expr AND expr | expr ANDAND expr | expr BACKSLASH expr | expr COLON expr | expr DIV expr | expr DOT expr | expr DOTDIV expr | expr DOTDIVEQ expr | expr DOTEXP expr | expr DOTMUL expr | expr DOTMULEQ expr | expr EQEQ expr | expr EXP expr | expr EXPEQ expr | expr GE expr | expr GT expr | expr LE expr | expr LT expr | expr MINUS expr | expr MUL expr | expr NE expr | expr OR expr | expr OROR expr | expr PLUS expr | expr EQ expr | expr MULEQ expr | expr DIVEQ expr | expr MINUSEQ expr | expr PLUSEQ expr | expr OREQ expr | expr ANDEQ expr """ if p[2] == "=": if p[1].__class__ is node.let: raise NotImplementedError("assignment " "as expression") # The algorithm, which decides if an # expression F(X) # is arrayref or funcall, is implemented in # resolve.py, except the following lines up # to XXX. These lines handle the case where # an undefined array is updated: # >>> clear a # >>> a[1:10]=123 # Though legal in matlab, these lines # confuse the algorithm, which thinks that # the undefined variable is a function name. # To prevent the confusion, we mark these # nodes arrayref as early as during the parse # phase. if p[1].__class__ is node.funcall: # A(B) = C p[1].__class__ = node.arrayref elif p[1].__class__ is node.matrix: # [A1(B1) A2(B2) ...] = C for e in p[1].args: if e.__class__ is node.funcall: e.__class__ = node.arrayref # XXX if isinstance(p[1],node.getfield): #import pdb;pdb.set_trace() # A.B=C setfield(A,B,C) p[0] = node.setfield(p[1].args[0], p[1].args[1], p[3]) else: #assert len(p[1].args) > 0 ret = p[1].args if isinstance(p[1],node.matrix) else p[1] p[0] = node.let(ret=ret, args=p[3], lineno=p.lineno(2), lexpos=p.lexpos(2)) if isinstance(p[1],node.matrix): # TBD: mark idents as "P" - persistent if p[3].__class__ not in (node.ident,node.funcall): #, p[3].__class__ raise NotImplementedError("multi-assignment %d" % p[0].lineno) if p[3].__class__ is node.ident: # [A1(B1) A2(B2) ...] = F implied F() # import pdb; pdb.set_trace() p[3] = node.funcall(func_expr=p[3], args=node.expr_list()) # [A1(B1) A2(B2) ...] = F(X) p[3].nargout = len(p[1].args[0]) elif p[2] == ".*": p[0] = node.dot(p[1],p[3]) # elif p[2] == "." and isinstance(p[3],node.expr) and p[3].op=="parens": # p[0] = node.getfield(p[1],p[3].args[0]) # raise NotImplementedError(p[3],p.lineno(3),p.lexpos(3)) elif p[2] == ":" and isinstance(p[1],node.expr) and p[1].op==":": # Colon expression means different things depending on the # context. As an array subscript, it is a slice; otherwise, # it is a call to the "range" function, and the parser can't # tell which is which. So understanding of colon expressions # is put off until after "resolve". p[0] = p[1] p[0].args.insert(1,p[3]) else: p[0] = node.expr(op=p[2],args=node.expr_list([p[1],p[3]]))
def p_expr2(p): """expr2 : expr AND expr | expr ANDAND expr | expr BACKSLASH expr | expr COLON expr | expr DIV expr | expr DOT expr | expr DOTDIV expr | expr DOTDIVEQ expr | expr DOTEXP expr | expr DOTMUL expr | expr DOTMULEQ expr | expr EQEQ expr | expr POW expr | expr EXP expr | expr EXPEQ expr | expr GE expr | expr GT expr | expr LE expr | expr LT expr | expr MINUS expr | expr MUL expr | expr NE expr | expr OR expr | expr OROR expr | expr PLUS expr | expr EQ expr | expr MULEQ expr | expr DIVEQ expr | expr MINUSEQ expr | expr PLUSEQ expr | expr OREQ expr | expr ANDEQ expr """ if p[2] == "=": if p[1].__class__ is node.let: raise_exception(SyntaxError, "Not implemented assignment as expression", new_lexer) # The algorithm, which decides if an # expression F(X) # is arrayref or funcall, is implemented in # resolve.py, except the following lines up # to XXX. These lines handle the case where # an undefined array is updated: # >>> clear a # >>> a[1:10]=123 # Though legal in matlab, these lines # confuse the algorithm, which thinks that # the undefined variable is a function name. # To prevent the confusion, we mark these # nodes arrayref as early as during the parse # phase. if p[1].__class__ is node.funcall: # A(B) = C p[1].__class__ = node.arrayref elif p[1].__class__ is node.matrix: # [A1(B1) A2(B2) ...] = C for e in p[1].args: if e.__class__ is node.funcall: e.__class__ = node.arrayref # XXX if isinstance(p[1], node.getfield): # import pdb;pdb.set_trace() # A.B=C setfield(A,B,C) p[0] = node.setfield(p[1].args[0], p[1].args[1], p[3]) else: # assert len(p[1].args) > 0 ret = p[1].args if isinstance(p[1], node.matrix) else p[1] p[0] = node.let(ret=ret, args=p[3], lineno=p.lineno(2), lexpos=p.lexpos(2)) if isinstance(p[1], node.matrix): # TBD: mark idents as "P" - persistent if p[3].__class__ not in (node.ident, node.funcall): #, p[3].__class__ raise_exception(SyntaxError, "multi-assignment", new_lexer) if p[3].__class__ is node.ident: # [A1(B1) A2(B2) ...] = F implied F() # import pdb; pdb.set_trace() p[3] = node.funcall(func_expr=p[3], args=node.expr_list()) # [A1(B1) A2(B2) ...] = F(X) p[3].nargout = len(p[1].args[0]) elif p[2] == "*": p[0] = node.funcall(func_expr=node.ident("dot"), args=node.expr_list([p[1], p[3]])) elif p[2] == ".*": p[0] = node.funcall(func_expr=node.ident("multiply"), args=node.expr_list([p[1], p[3]])) # elif p[2] == "." and isinstance(p[3],node.expr) and p[3].op=="parens": # p[0] = node.getfield(p[1],p[3].args[0]) # raise SyntaxError(p[3],p.lineno(3),p.lexpos(3)) elif p[2] == ":" and isinstance(p[1], node.expr) and p[1].op == ":": # Colon expression means different things depending on the # context. As an array subscript, it is a slice; otherwise, # it is a call to the "range" function, and the parser can't # tell which is which. So understanding of colon expressions # is put off until after "resolve". p[0] = p[1] p[0].args.insert(1, p[3]) else: p[0] = node.expr(op=p[2], args=node.expr_list([p[1], p[3]]))
def resolve(t, symtab=None, fp=None, func_name=None): if symtab is None: symtab = {} do_resolve(t, symtab) G = as_networkx(t) # import pdb;pdb.set_trace() for n in G.nodes(): u = G.node[n]["ident"] if u.props: pass elif G.out_edges(n) and G.in_edges(n): u.props = "U" # upd # print u.name, u.lineno, u.column elif G.in_edges(n): u.props = "D" # def elif G.out_edges(n): u.props = "R" # ref else: u.props = "F" # ??? G.node[n]["label"] = "%s\\n%s" % (n, u.props) for u in node.postorder(t): # if u.__class__ is node.func_decl: # u.ident.name += "_" if u.__class__ is node.funcall: try: if u.func_expr.props in "UR": # upd,ref u.__class__ = node.arrayref # else: # u.func_expr.name += "_" except: pass for u in node.postorder(t): if u.__class__ in (node.arrayref, node.cellarrayref): for i, v in enumerate(u.args): if v.__class__ is node.expr and v.op == ":": v.op = "::" # for w in node.postorder(v): # if w.__class__ is node.expr and w.op == "end": # w.args[0] = u.func_expr # w.args[1] = node.number(i) for u in node.postorder(t): if u.__class__ is node.let: if u.ret.__class__ is node.ident and u.args.__class__ is node.matrix: u.args = node.funcall(func_expr=node.ident("matlabarray"), args=node.expr_list([u.args])) H = nx.connected_components(G.to_undirected()) for i, component in enumerate(H): for nodename in component: if G.node[nodename]["ident"].props == "R": has_update = 1 break else: has_update = 0 if has_update: for nodename in component: G.node[nodename]["ident"].props += "S" # sparse # S = G.subgraph(nbunch) # print S.edges() return G