コード例 #1
0
    def __init__(self, data_shape):
        self.data_shape = data_shape
        self.discriminator = None
        self.generator = None
        self.adversarial = None

        self.define_gan()
        self.noisy_samples = NoiseMaker(generator=self.generator)

        self.performance_output_path = 'performance/temp/'
        if not os.path.exists(self.performance_output_path):
            os.makedirs(self.performance_output_path)
コード例 #2
0
    def __init__(self, data_shape):
        """
        Initialize SiDN-GAN
        """
        self.data_shape = data_shape
        self.discriminator = None
        self.generator = None
        self.adversarial = None

        self.define_gan()
        self.noise_maker = NoiseMaker(shape=self.data_shape, noise_type='s&p')

        self.performance_output_path = 'performance/siamese_dn_gan_' + str(
            datetime.now().date())
コード例 #3
0

# Warm up
x = 0
for i in range(BASE_ITERATIONS):
    x += 1

op = "dirichlet.rvs() (scipy frozen distribution, size 9)"
import scipy.stats  # noqa
d = scipy.stats.dirichlet([.2] * 9)
with time_operation(op, BASE_ITERATIONS) as op:
    for i in range(op.num_interations):
        d.rvs()

from noise_maker import NoiseMaker  # noqa
NOISE_MAKER = NoiseMaker(1000)
op = "NOISE_MAKER.make_noise(.2, 10)"
with time_operation(op, BASE_ITERATIONS) as op:
    for i in range(op.num_interations):
        NOISE_MAKER.make_noise(.2, 10)

op = "random.randint(0, 9999)"
with time_operation(op, BASE_ITERATIONS) as op:
    for i in range(op.num_interations):
        random.randint(0, 9999)

op = "[0.0 for x in agents]"
agents = [0, 1]
with time_operation(op, BASE_ITERATIONS) as op:
    for i in range(op.num_interations):
        s = [0.0 for x in agents]
コード例 #4
0
    generated = generator.predict(noisy)

    # save the generator model
    model_file = path + '/model_%04d.h5' % (epoch + 1)
    generator.save(model_file)

    fig_file = path + '/plot_%04d' % ((epoch + 1))
    measure_and_plot(original_images=test_data,
                     noisy_images=noisy,
                     generated_images=generated,
                     path=fig_file)

    print('>Saved model and figures to', path)


if __name__ == '__main__':

    dataset = Dataset(dataset='caltech256')
    dataset.split_test_data(test_sample=2000)
    noise_maker = NoiseMaker(shape=dataset.data_shape, noise_type='s&p')

    model_folder = 'C:/PycharmProjects/NeuralNetworks-GAN/performance/caltech256-128x128-siamese_dn_gan_2019-12-21'

    for epoch in range(20):
        generator_path = model_folder + '/epoch-%04d' % (
            epoch + 1) + '/model_%04d.h5' % (epoch + 1)
        generator = load_model(generator_path)

        performance(generator, noise_maker, epoch, dataset.test_data,
                    model_folder)
コード例 #5
0
 def __post_init__(self):
     super().__post_init__()
     self.noise_maker = NoiseMaker(1000)
     if self.policy_overrides is None:
         self.policy_overrides = [None, None]