def effect(ctx, seed, filename, no_resize, time, speed, preset_name, input_filename): if not seed: seed = random.randint(1, MAX_SEED_VALUE) value.set_seed(seed) reload_presets(PRESETS) input_shape = util.shape_from_file(input_filename) input_shape[2] = min(input_shape[2], 3) tensor = tf.image.convert_image_dtype(util.load(input_filename, channels=input_shape[2]), dtype=tf.float32) if preset_name == "random": preset_name = list(EFFECT_PRESETS)[random.randint(0, len(EFFECT_PRESETS) - 1)] print(f"{preset_name} (seed: {seed})") preset = EFFECT_PRESETS[preset_name] if no_resize: shape = input_shape else: shape = [1024, 1024, input_shape[2]] tensor = effects.square_crop_and_resize(tensor, input_shape, shape[0]) try: preset.render(tensor=tensor, shape=shape, time=time, speed=speed, filename=filename) except Exception as e: util.logger.error(f"preset.render() failed: {e}\nSeed: {seed}\nArgs: {preset.__dict__}") raise
def main(ctx, name, retro_upscale, input_filename): shape = shape_from_file(input_filename) tensor = tf.image.convert_image_dtype(load(input_filename, channels=3), tf.float32) if retro_upscale: shape = [shape[0] * 2, shape[1] * 2, shape[2]] tensor = value.resample(tensor, shape, spline_order=0) tensor = effects.square_crop_and_resize(tensor, shape, 1024) with tf.compat.v1.Session().as_default(): save(tensor, name)
def main(ctx, seed, name, no_resize, overrides, time, preset_name, input_filename): presets.bake_presets(seed) input_shape = effects.shape_from_file(input_filename) input_shape[2] = min(input_shape[2], 3) tensor = tf.image.convert_image_dtype(load(input_filename, channels=input_shape[2]), dtype=tf.float32) if preset_name == 'random': preset_name = 'random-effect' kwargs = presets.preset(preset_name) print(kwargs['name']) kwargs['time'] = time if 'freq' not in kwargs: kwargs['freq'] = [3, 3] if 'octaves' not in kwargs: kwargs['octaves'] = 1 if 'ridges' not in kwargs: kwargs['ridges'] = False if no_resize: kwargs['shape'] = input_shape else: kwargs['shape'] = [1024, 1024, input_shape[2]] tensor = effects.square_crop_and_resize(tensor, input_shape, kwargs['shape'][0]) if overrides: kwargs.update(json.loads(overrides)) tensor = effects.post_process(tensor, **kwargs) tensor = recipes.post_process(tensor, **kwargs) with tf.Session().as_default(): save(tensor, name)
def basic(ctx, width, height, input_dir, name, control_filename, retro_upscale): shape = [height, width, 3] # Any shape you want, as long as it's [1024, 1024, 3] filenames = [] for root, _, files in os.walk(input_dir): for filename in files: if filename.endswith(('.png', '.jpg')): filenames.append(os.path.join(root, filename)) collage_count = min(random.randint(4, 6), len(filenames)) collage_images = [] for i in range(collage_count + 1): index = random.randint(0, len(filenames) - 1) input_filename = os.path.join(input_dir, filenames[index]) collage_input = tf.image.convert_image_dtype(util.load(input_filename, channels=3), dtype=tf.float32) input_shape = effects.shape_from_file(input_filename) if retro_upscale: input_shape = [ input_shape[0] * 2, input_shape[1] * 2, input_shape[2] ] collage_input = effects.resample(collage_input, input_shape, spline_order=0) collage_input = effects.square_crop_and_resize(collage_input, input_shape, 1024) collage_images.append(collage_input) base = generators.basic(freq=random.randint(2, 5), shape=shape, lattice_drift=random.randint(0, 1), hue_range=random.random()) if control_filename: control = tf.image.convert_image_dtype(util.load(control_filename, channels=1), dtype=tf.float32) control = effects.square_crop_and_resize( control, effects.shape_from_file(control_filename), 1024) control = effects.value_map(control, shape, keep_dims=True) else: control = effects.value_map(collage_images.pop(), shape, keep_dims=True) control = effects.convolve(effects.ValueMask.conv2d_blur, control, [height, width, 1]) with tf.Session().as_default(): # sort collage images by brightness collage_images = [ j[1] for j in sorted([(tf.reduce_sum(i).eval(), i) for i in collage_images]) ] tensor = effects.blend_layers(control, shape, random.random() * .5, *collage_images) tensor = effects.blend(tensor, base, .125 + random.random() * .125) tensor = effects.bloom(tensor, shape, alpha=.25 + random.random() * .125) tensor = effects.shadow(tensor, shape, alpha=.25 + random.random() * .125, reference=control) tensor = tf.image.adjust_brightness(tensor, .05) tensor = tf.image.adjust_contrast(tensor, 1.25) save(tensor, name) print('mashup')