def test_reduce_cafe_noise(): # load data wav_loc = "assets/coffe-1_2020-03-08_170854361.wav" rate, data = wavfile.read(wav_loc) data = int16_to_float32(data) noise_loc = "assets/coffe-1x_2020-03-08_170932616.wav" noise_rate, noise_data = wavfile.read(noise_loc) noise_data = int16_to_float32(noise_data) # add noise snr = 2 # signal to noise ratio noise_clip = noise_data / snr audio_clip_cafe = data # reduce noise reduced_noise = nr.reduce_noise(audio_clip=audio_clip_cafe, noise_clip=noise_clip, verbose=True) return float32_to_int16(reduced_noise)
def test_reduce_cafe_noise(): # load data wav_loc = "assets/fish.wav" rate, data = wavfile.read(wav_loc) data = int16_to_float32(data) noise_loc = "assets/cafe_short.wav" noise_rate, noise_data = wavfile.read(noise_loc) noise_data = int16_to_float32(noise_data) # add noise snr = 2 # signal to noise ratio noise_clip = noise_data / snr audio_clip_cafe = data + noise_clip # reduce noise reduced_noise = nrv1.reduce_noise(audio_clip=audio_clip_cafe, noise_clip=noise_clip, verbose=True) return float32_to_int16(reduced_noise)
def test_reduce_generated_noise(): # load data wav_loc = "assets/fish.wav" rate, data = wavfile.read(wav_loc) data = int16_to_float32(data) # add noise noise_len = 2 # seconds noise = (band_limited_noise( min_freq=2000, max_freq=12000, samples=len(data), samplerate=rate) * 10) noise_clip = noise[:rate * noise_len] audio_clip_band_limited = data + noise return nrv1.reduce_noise(audio_clip=audio_clip_band_limited, noise_clip=noise_clip, verbose=True)
type=str, help='Noisy File', required=True) parser.add_argument('--output_file', '-o', type=str, help='Denoised file', required=True) parser.add_argument('--threshold', '-t', type=float, help='Threshold', default=1.5) args = parser.parse_args() r, y = load_wav(args.input_file) y = int16_to_float32(y) noise = find_some_background_noise(r, y) wavfile.write(f'{args.output_file}.noise_section.wav', r, noise) reduced_noise = nr.reduce_noise( n_std_thresh=args.threshold, n_fft=1024, win_length=1024, audio_clip=y, noise_clip=noise, use_tensorflow=False, verbose=False, ) wavfile.write(args.output_file, r, np.array(reduced_noise))