def index(mapper, bulk_size=10000): """Indexing""" pres_prof_mapping = gen_mappings() file = open(WP_ST_F, "r") index_name = WP_ST_INDEX_ID mappings = { "content": Elastic.analyzed_field(), "professions": Elastic.notanalyzed_field() } elastic = Elastic(index_name) elastic.create_index(mappings, force=True) doc_id = 0 docs = {} for line in file: doc_id += 1 profs = [] while ("[" in line): # replace [A|B] with A matchObj = re.search('\[(.*?)\]', line) entity = matchObj.group(1).split("|")[0] name = entity.replace("_", " ") entity_id = mapper.get_id_from_person(name) prof_list = pres_prof_mapping[name] prof_list = [mapper.get_id_from_prof(prof) for prof in prof_list] profs += prof_list line = line.replace("[" + matchObj.group(1) + "]", entity_id) docs[doc_id] = {"content": line, "professions": list(set(profs))} if len(docs) == bulk_size: # bulk add 10000 sentences into elastic elastic.add_docs_bulk(docs) docs = {} print(doc_id / 1000, "K documents indexed.") # if len(docs) < 10000: # index the last butch of sentences elastic.add_docs_bulk(docs)
class IndexerDBpediaTypes(object): __DOC_TYPE = "doc" # we don't make use of types __MAPPINGS = { "id": Elastic.notanalyzed_field(), "content": Elastic.analyzed_field(), } def __init__(self, config): self.__elastic = None self.__config = config self.__index_name = config["index_name"] self.__dbpedia_path = config["dbpedia_files_path"] # For triple parsing self.__prefix = URIPrefix() self.__triple = Triple() self.__ntparser = NTriplesParser(self.__triple) # Entity abstract and type assignments kept in memory self.__entity_abstracts = {} self.__load_entity_abstracts() self.__types_entities = defaultdict(list) self.__load_entity_types() @property def name(self): return self.__index_name def __parse_line(self, line): """Parses a line from a ttl file and returns subject and object pair. It is used for parsing DBpedia abstracts and entity types. The subject is always prefixed. For object URIs, it is returned prefixed if from DBpedia otherwise None (i.e., types); literal objects are always returned (i.e., abstracts). """ line = line.decode("utf-8") if isinstance(line, bytes) else line try: self.__ntparser.parsestring(line) except ParseError: # skip lines that couldn't be parsed return None, None if self.__triple.subject() is None: # only if parsed as a triple return None, None subj = self.__prefix.get_prefixed(self.__triple.subject()) obj = None if type(self.__triple.object()) is URIRef: if self.__triple.object().startswith( "http://dbpedia.org/ontology"): obj = self.__prefix.get_prefixed(self.__triple.object()) else: obj = self.__triple.object().encode("utf-8") return subj, obj def __load_entity_abstracts(self): num_lines = 0 filename = os.sep.join([self.__dbpedia_path, ENTITY_ABSTRACTS_FILE]) PLOGGER.info("Loading entity abstracts from {}".format(filename)) for line in FileUtils.read_file_as_list(filename): entity, abstract = self.__parse_line(line) if abstract and len(abstract) > 0: # skip empty objects self.__entity_abstracts[entity] = abstract num_lines += 1 if num_lines % 10000 == 0: PLOGGER.info(" {}K lines processed".format(num_lines // 1000)) PLOGGER.info(" Done.") def __load_entity_types(self): num_lines = 0 for types_file in ENTITY_TYPES_FILES: filename = os.sep.join([self.__dbpedia_path, types_file]) PLOGGER.info("Loading entity types from {}".format(filename)) for line in FileUtils.read_file_as_list(filename): entity, entity_type = self.__parse_line(line) if type(entity_type) != str: # Likely result of parsing error continue if not entity_type.startswith("<dbo:"): PLOGGER.info(" Non-DBpedia type: {}".format(entity_type)) continue if not entity.startswith("<dbpedia:"): PLOGGER.info(" Invalid entity: {}".format(entity)) continue self.__types_entities[entity_type].append(entity) num_lines += 1 if num_lines % 10000 == 0: PLOGGER.info(" {}K lines processed".format(num_lines // 1000)) PLOGGER.info(" Done.") def __make_type_doc(self, type_name): """Gets the document representation of a type to be indexed, from its entity short abstracts.""" content = "\n".join([ self.__entity_abstracts.get(e, b"").decode("utf-8") for e in self.__types_entities[type_name] ]) if len(content) > MAX_BULKING_DOC_SIZE: PLOGGER.info("Type {} has content larger than allowed: {}.".format( type_name, len(content))) # we randomly sample a subset of Y entity abstracts, s.t. # Y * AVG_SHORT_ABSTRACT_LEN <= MAX_BULKING_DOC_SIZE num_entities = len(self.__types_entities[type_name]) amount_abstracts_to_sample = min( floor(MAX_BULKING_DOC_SIZE / AVG_SHORT_ABSTRACT_LEN), num_entities) entities_sample = [ self.__types_entities[type_name][i] for i in sample( range(num_entities), amount_abstracts_to_sample) ] content = "" # reset content for entity in entities_sample: new_content_candidate = "\n".join([ content, self.__entity_abstracts.get(entity, b"").decode("utf-8") ]) # we add an abstract only if by doing so it will not exceed # MAX_BULKING_DOC_SIZE if len(new_content_candidate) > MAX_BULKING_DOC_SIZE: break content = new_content_candidate return {"content": content} def build_index(self, force=False): """Builds the index. Note: since DBpedia only has a few hundred types, no bulk indexing is needed. :param force: True iff it is required to overwrite the index (i.e. by creating it by force); False by default. :type force: bool :return: """ PLOGGER.info("Building type index {}".format(self.__index_name)) self.__elastic = Elastic(self.__index_name) self.__elastic.create_index(mappings=self.__MAPPINGS, force=force) for type_name in self.__types_entities: PLOGGER.info(" Adding {} ...".format(type_name)) contents = self.__make_type_doc(type_name) self.__elastic.add_doc(type_name, contents) PLOGGER.info(" Done.")