def norgate_defined_start(watchlist, start_date, end_date, frequency): symbols = norgatedata.watchlist_symbols(watchlist) df_list = [] for symbol in symbols: norgate_df = norgatedata.price_timeseries(symbol, start_date=start_date, end_date=end_date, interval=frequency, format='pandas-dataframe') # creating a symbol column so that we can identify # what ticker information we're looking at norgate_df['Symbol'] = symbol # appending the dataframes to an empty list to concatenate them after the for loop df_list.append(norgate_df) return df_list
import pandas as pd import norgatedata from datetime import datetime lookback_period = 60 end_date = datetime.now() watchlistname = 'spy_tlt_gld' symbols = norgatedata.watchlist_symbols(watchlistname) df_list = [] for symbol in symbols: norgate_df = norgatedata.price_timeseries( symbol, end_date=end_date, limit=lookback_period, interval='D', format='pandas-dataframe') # creating a symbol column so that we can identify # what ticker information we're looking at norgate_df['Symbol'] = symbol # appending the dataframes to an empty list to concatenate them after the for loop df_list.append(norgate_df) # joins the dataframes together for all tickers
def load_index_universe(indexname): watchlist = watchlist_for(indexname) symbols = ng.watchlist_symbols(watchlist) return symbols
def get_symbols_from_norgate_watchlist(watchlist_name): symbols = norgatedata.watchlist_symbols(watchlist_name) return symbols