コード例 #1
0
ファイル: joint_normal_tests.py プロジェクト: robdmc/norma
class MarginalTests(TestCase):
    def setUp(self):
        self.norm = JointNormal(
            mu=[0, 1, 2],
            labels=['x', 'y', 'z'],
            cov=[
                [0, 1, 2],
                [3, 4, 5],
                [6, 7, 8]
            ], N=10)

    def test_forward(self):
        marg = self.norm.marginal('y', 'z')
        cov_diff = marg.cov - np.matrix([[4, 5], [7, 8]])
        mu_diff = marg.mu - np.matrix([[1], [2]])
        self.assertAlmostEqual(cov_diff.max(), 0)
        self.assertAlmostEqual(cov_diff.min(), 0)
        self.assertAlmostEqual(mu_diff.min(), 0)
        self.assertAlmostEqual(mu_diff.max(), 0)
        self.assertEqual(marg.N, self.norm.N)

    def test_backward(self):
        marg = self.norm.marginal('z', 'y')
        cov_diff = marg.cov - np.matrix([[8, 7], [5, 4]])
        mu_diff = marg.mu - np.matrix([[2], [1]])
        self.assertAlmostEqual(cov_diff.max(), 0)
        self.assertAlmostEqual(cov_diff.min(), 0)
        self.assertAlmostEqual(mu_diff.min(), 0)
        self.assertAlmostEqual(mu_diff.max(), 0)
        self.assertEqual(marg.N, self.norm.N)
コード例 #2
0
ファイル: joint_normal_tests.py プロジェクト: robdmc/norma
 def test_str(self):
     p = JointNormal(labels=['x', 'y'], mu=[0, 0], cov=[[1e-19, 1e-19], [1e-19, 1e-19]])
     p.ingest(self.df)
     s = str(p)
     self.assertTrue('N' in s)
     self.assertTrue('x' in s)
     self.assertTrue('x' in s)
コード例 #3
0
ファイル: joint_normal_tests.py プロジェクト: robdmc/norma
 def test_cov(self):
     p = JointNormal(labels=['x', 'y'])
     p.ingest(self.df)
     self.assertAlmostEqual(p.cov[0, 0], self.cov[0, 0])
     self.assertAlmostEqual(p.cov[1, 1], self.cov[1, 1])
     self.assertAlmostEqual(p.cov[1, 0], self.cov[1, 0])
     self.assertAlmostEqual(p.cov[0, 1], self.cov[0, 1])
     self.assertAlmostEqual(self.N, p.N)
コード例 #4
0
ファイル: joint_normal_tests.py プロジェクト: robdmc/norma
 def setUp(self):
     self.P = JointNormal(
         mu=[1, 1],
         labels=['x', 'y'],
         cov=[
             [1, 1],
             [1, 1.01],
         ], N=10)
コード例 #5
0
ファイル: joint_normal_tests.py プロジェクト: robdmc/norma
 def setUp(self):
     self.norm = JointNormal(
         mu=[0, 1, 2],
         labels=['x', 'y', 'z'],
         cov=[
             [0, 1, 2],
             [3, 4, 5],
             [6, 7, 8]
         ], N=10)
コード例 #6
0
ファイル: joint_normal_tests.py プロジェクト: robdmc/norma
 def test_list_input(self):
     p = JointNormal(labels=['x', 'y'], mu=[0, 0], cov=[[1e-19, 1e-19], [1e-19, 1e-19]])
     df = self.df[['y', 'x']]
     p.ingest(df)
     mu, cov, N = p.mu_cov_n
     self.assertAlmostEqual(p.mu[0, 0], self.mu[0])
     self.assertAlmostEqual(p.mu[1, 0], self.mu[1])
     self.assertEqual(tuple(cov.shape), (2, 2))
     self.assertEqual(N, len(self.df))
コード例 #7
0
ファイル: joint_normal_tests.py プロジェクト: robdmc/norma
 def test_correct_value(self):
     P = JointNormal(
         mu=[0, 0],
         labels=['x', 'y'],
         cov=[
             [1, 0],
             [0, 1],
         ], N=10)
     percentile_value = P.percentile(x=.75)
     self.assertAlmostEqual(P.probability(x__lt=percentile_value), .75, places=12)
コード例 #8
0
ファイル: joint_normal_tests.py プロジェクト: robdmc/norma
 def test_too_many_vars(self):
     P = JointNormal(
         mu=[0, 0],
         labels=['x', 'y'],
         cov=[
             [1, 0],
             [0, 1],
         ], N=10)
     with self.assertRaises(ValueError):
         P.percentile(x=.75, y=.2)
コード例 #9
0
ファイル: joint_normal_tests.py プロジェクト: robdmc/norma
 def test_no_limits(self):
     P = JointNormal(
         mu=[1, 1],
         labels=['x', 'y'],
         cov=[
             [1, 1],
             [1, 1.01],
         ], N=10)
     with self.assertRaises(ValueError):
         P.probability(x=2, y=2)
コード例 #10
0
ファイル: joint_normal_tests.py プロジェクト: robdmc/norma
 def test_conditional(self):
     P = JointNormal(
         mu=[0, 0],
         labels=['x', 'y'],
         cov=[
             [1, 1],
             [1, 1.01],
         ], N=10)
     mu_x, sigma_x = P.estimate('x', y=9)
     self.assertAlmostEqual(mu_x, 8.91, places=2)
     self.assertAlmostEqual(sigma_x, .1, places=1)
コード例 #11
0
ファイル: joint_normal_tests.py プロジェクト: robdmc/norma
    def test_full_subtract(self):
        norm1 = JointNormal(labels=['x', 'y'], mu=[1, 1], cov=[[2, 1], [1, 2]])
        norm2 = JointNormal(labels=['x', 'y'], mu=[2, 2], cov=[[2, 1], [1, 2]])
        normp = norm1 - norm2

        mu_diff = normp.mu - (norm1.mu - norm2.mu)
        cov_diff = normp.cov - (norm1.cov + norm2.cov)

        self.assertAlmostEqual(mu_diff.max(), 0)
        self.assertAlmostEqual(mu_diff.min(), 0)
        self.assertAlmostEqual(cov_diff.max(), 0)
        self.assertAlmostEqual(cov_diff.min(), 0)
コード例 #12
0
ファイル: joint_normal_tests.py プロジェクト: robdmc/norma
 def test_correct_value(self):
     P = JointNormal(
         mu=[0, 0],
         labels=['x', 'y'],
         cov=[
             [1, 0],
             [0, 1],
         ], N=10)
     N = stats.norm()
     self.assertAlmostEqual(P.probability(x__gt=0, y=0), N.cdf(0), places=14)
     self.assertAlmostEqual(P.probability(x__lt=1, y=0), N.cdf(1), places=14)
     self.assertAlmostEqual(P.probability(x__gt=5, y=0), 1. - N.cdf(5), places=14)
コード例 #13
0
ファイル: joint_normal_tests.py プロジェクト: robdmc/norma
 def test_iterable(self):
     P = JointNormal(
         mu=[0, 0],
         labels=['x', 'y'],
         cov=[
             [1, 0],
             [0, 1],
         ], N=10)
     percentiles = [.25, .5, .75]
     values_at_percentiles = P.percentile(x=percentiles)
     new_percentiles = P.probability(x__lt=values_at_percentiles)
     self.assertAlmostEqual(new_percentiles[0], percentiles[0])
     self.assertAlmostEqual(new_percentiles[1], percentiles[1])
     self.assertAlmostEqual(new_percentiles[2], percentiles[2])
コード例 #14
0
ファイル: joint_normal_tests.py プロジェクト: robdmc/norma
    def test_full_multiply(self):
        norm1 = JointNormal(labels=['x', 'y'], mu=[0, 0], cov=[[2, 1], [1, 2]])
        norm2 = JointNormal(labels=['x', 'y'], mu=[2, 2], cov=[[2, 1], [1, 2]])
        normp = norm1 * norm2

        prec1 = norm1.cov.getI()
        prec2 = norm2.cov.getI()
        precp = normp.cov.getI()
        dprec = precp - prec1 - prec2

        self.assertAlmostEqual(dprec.max(), 0)
        self.assertAlmostEqual(dprec.min(), 0)
        self.assertAlmostEqual(normp.mu.max(), 1)
        self.assertAlmostEqual(normp.mu.min(), 1)
コード例 #15
0
ファイル: joint_normal_tests.py プロジェクト: robdmc/norma
    def test_with_args(self):
        norm1 = JointNormal(labels=['x', 'y'], mu=[0, 0], cov=[[4, 1], [1, 4]])
        norm2 = JointNormal(labels=['x', 'y'], mu=[2, 2], cov=[[4, 1], [1, 4]])
        normp = multiply_independent_normals(norm1, norm1, norm2, norm2)

        prec1 = norm1.cov.getI()
        prec2 = norm2.cov.getI()
        precp = normp.cov.getI()
        dprec = precp - 2 * (prec1 + prec2)

        self.assertAlmostEqual(dprec.max(), 0)
        self.assertAlmostEqual(dprec.min(), 0)
        self.assertAlmostEqual(normp.mu.max(), 1)
        self.assertAlmostEqual(normp.mu.min(), 1)
コード例 #16
0
ファイル: joint_normal_tests.py プロジェクト: robdmc/norma
 def test_marginal(self):
     P = JointNormal(
         mu=[-1, 1],
         labels=['x', 'y'],
         cov=[
             [1, 1],
             [1, 1.01],
         ], N=10)
     mu_x, sigma_x = P.estimate('x')
     mu_y, sigma_y = P.estimate('y')
     self.assertAlmostEqual(mu_x, -1)
     self.assertAlmostEqual(mu_y, 1)
     self.assertAlmostEqual(sigma_x, 1)
     self.assertAlmostEqual(sigma_y, 1, places=1)
コード例 #17
0
ファイル: joint_normal_tests.py プロジェクト: robdmc/norma
    def test_with_list(self):
        norm1 = JointNormal(labels=['x', 'y'], mu=[1, 1], cov=[[4, 1], [1, 4]])
        norm2 = JointNormal(labels=['x', 'y'], mu=[2, 2], cov=[[40, 1], [1, 4]])
        normp = add_independent_normals([norm1, norm1, norm2, norm2])

        cov1 = norm1.cov
        cov2 = norm2.cov
        covp = normp.cov
        dcov = covp - 2 * (cov1 + cov2)

        self.assertAlmostEqual(dcov.max(), 0)
        self.assertAlmostEqual(dcov.min(), 0)
        self.assertAlmostEqual(normp.mu.max(), 6)
        self.assertAlmostEqual(normp.mu.min(), 6)
コード例 #18
0
ファイル: joint_normal_tests.py プロジェクト: robdmc/norma
 def test_sums_to_one(self):
     P = JointNormal(
         mu=[1, 1],
         labels=['x', 'y'],
         cov=[
             [1, 1],
             [1, 1.01],
         ], N=10)
     px_gt = P.probability(x__gt=2, y=2)
     px_lt = P.probability(x__lt=2, y=2)
     py_gt = P.probability(y__gt=2, x=-20)
     py_lt = P.probability(y__lt=2, x=-20)
     self.assertAlmostEqual(sum([px_gt, px_lt]), 1, places=14)
     self.assertAlmostEqual(sum([py_gt, py_lt]), 1, places=14)
コード例 #19
0
ファイル: joint_normal_tests.py プロジェクト: robdmc/norma
    def test_diag_multiply(self):
        norm1 = JointNormal(labels=['x', 'y'], mu=[1, 0], cov=[[2, 0], [0, 2]])
        norm2 = JointNormal(labels=['x', 'y'], mu=[0, 1], cov=[[2, 0], [0, 2]])
        normp = norm1 * norm2

        V = normp.cov
        mu = normp.mu

        self.assertAlmostEqual(V[0, 0], 1)
        self.assertAlmostEqual(V[1, 1], 1)
        self.assertAlmostEqual(V[0, 1], 0)
        self.assertAlmostEqual(V[1, 0], 0)
        self.assertAlmostEqual(mu[0, 0], .5)
        self.assertAlmostEqual(mu[1, 0], .5)
コード例 #20
0
ファイル: joint_normal_tests.py プロジェクト: robdmc/norma
    def setUp(self):
        # Let R be the square root covariance matrix (lower diag)
        # Then imagine a sample where measurement errors are
        # e = [e_x, 0, 0].T
        # Then the conditional expectation of the joint normal
        # with any mu and covariance S = R * R.T
        # will be X_cond = mu + R * e

        # define sqrt covariance (this can be arbitrary square matrix)
        self.R = np.matrix(
            [
                [100, 0, 0],
                [20, 10, 0],
                [5, 4, 3]
            ]
        )

        # compute covariance matrix
        S = self.R * self.R.T

        # define the mu vector
        self.mu = np.matrix([2, 3, 4]).T

        # create joint normal
        self.N = JointNormal(mu=self.mu, labels=['x', 'y', 'z'], cov=S, N=10)
コード例 #21
0
ファイル: joint_normal_tests.py プロジェクト: robdmc/norma
 def test_iterable(self):
     P = JointNormal(
         mu=[0, 0],
         labels=['x', 'y'],
         cov=[
             [1, 0],
             [0, 1],
         ], N=10)
     x0 = range(-5, 6)
     p_gt = np.array(P.probability(x__gt=x0))
     p_lt = np.array(P.probability(x__lt=x0, y=2))
     p_sum = p_gt + p_lt
     self.assertTrue(all(round(x, 2) == 1 for x in p_sum))
     self.assertAlmostEqual(p_gt[5], .5)
     self.assertTrue(p_gt[0] > .5)
     self.assertTrue(p_lt[0] < .5)
     self.assertTrue(p_gt[-1] < .5)
     self.assertTrue(p_lt[-1] > .5)
コード例 #22
0
ファイル: joint_normal_tests.py プロジェクト: robdmc/norma
 def setUp(self):
     self.norm = JointNormal(
         mu=[0, 1, 2, 3],
         labels=['a', 'b', 'c', 'd'],
         cov=[
             [1, 2, 3, 4],
             [2, 5, 6, 7],
             [3, 6, 8, 9],
             [4, 7, 9, 10],
         ], N=10)
コード例 #23
0
ファイル: joint_normal_tests.py プロジェクト: robdmc/norma
class RenameMeTests(TestCase):
    def setUp(self):
        self.P = JointNormal(
            mu=[1, 1],
            labels=['x', 'y'],
            cov=[
                [1, 1],
                [1, 1.01],
            ], N=10)

    def test_index_for_bad_labels(self):
        with self.assertRaises(ValueError):
            self.P._index_for(['bad', 'labels'])

    def test_mu_frame(self):
        df = self.P.mu_frame
        self.assertEqual(list(df.columns), ['mu'])
        self.assertEqual(len(df), 2)

    def test_cov_frame(self):
        df = self.P.cov_frame
        self.assertEqual(list(df.columns), ['x', 'y'])
        self.assertEqual(list(df.index), ['x', 'y'])

    def test_check_args_too_big(self):
        with self.assertRaises(ValueError):
            self.P._check_args(free_ind=[100])

    def test_check_args_overlap(self):
        with self.assertRaises(ValueError):
            self.P._check_args(free_ind=[1], fixed_ind=[1])

    def test_check_args_dups_free(self):
        with self.assertRaises(ValueError):
            self.P._check_args(free_ind=[1, 1])

    def test_check_args_dups_fixed(self):
        with self.assertRaises(ValueError):
            self.P._check_args(fixed_ind=[1, 1])
コード例 #24
0
ファイル: joint_normal_tests.py プロジェクト: robdmc/norma
 def test_set_cov(self):
     p = JointNormal(labels=['x', 'y'], mu=np.array([0, 0]), cov=np.array([[1e-19, 1e-19], [1e-19, 1e-19]]))
     p.cov = self.cov
     self.assertAlmostEqual(p.cov[0, 0], self.cov[0, 0])
     self.assertAlmostEqual(p.cov[1, 1], self.cov[1, 1])
コード例 #25
0
ファイル: joint_normal_tests.py プロジェクト: robdmc/norma
 def test_set_mu(self):
     p = JointNormal(labels=['x', 'y'], mu=np.array([0, 0]), cov=np.array([[1e-19, 1e-19], [1e-19, 1e-19]]))
     p.mu = self.mu
     self.assertAlmostEqual(p.mu[0, 0], self.mu[0])
     self.assertAlmostEqual(p.mu[1, 0], self.mu[1])
コード例 #26
0
ファイル: joint_normal_tests.py プロジェクト: robdmc/norma
 def test_array_input(self):
     p = JointNormal(labels=['x', 'y'], mu=np.array([0, 0]), cov=np.array([[1e-19, 1e-19], [1e-19, 1e-19]]))
     p.ingest(self.df)
     self.assertAlmostEqual(p.mu[0, 0], self.mu[0])
     self.assertAlmostEqual(p.mu[1, 0], self.mu[1])
コード例 #27
0
ファイル: joint_normal_tests.py プロジェクト: robdmc/norma
 def test_list_input_bad_frame(self):
     p = JointNormal(labels=['a', 'b'], mu=[0, 0], cov=[[1e-19, 1e-19], [1e-19, 1e-19]])
     with self.assertRaises(ValueError):
         p.ingest(self.df)
コード例 #28
0
ファイル: joint_normal_tests.py プロジェクト: robdmc/norma
 def test_bad_dimensions(self):
     norm1 = JointNormal(labels=['x', 'y'], mu=[1, 1], cov=[[4, 1], [1, 4]])
     norm2 = JointNormal(labels=['y'], mu=[0], cov=[[2]])
     with self.assertRaises(ValueError):
         norm1 > norm2
コード例 #29
0
ファイル: joint_normal_tests.py プロジェクト: robdmc/norma
 def test_one_sigma_difference(self):
     norm1 = JointNormal(labels=['x'], mu=[2], cov=[[2]])
     norm2 = JointNormal(labels=['y'], mu=[0], cov=[[2]])
     self.assertAlmostEqual(norm1 > norm2, 0.84134474606854293)
     self.assertAlmostEqual(norm1 < norm2, 0.15865525393145707)
コード例 #30
0
ファイル: joint_normal_tests.py プロジェクト: robdmc/norma
 def test_5050(self):
     norm1 = JointNormal(labels=['x'], mu=[1], cov=[[4]])
     norm2 = JointNormal(labels=['y'], mu=[1], cov=[[4]])
     self.assertAlmostEqual(norm1 > norm2, .5)
     self.assertAlmostEqual(norm2 > norm1, .5)