コード例 #1
0
 print 'Generated Results Array'
 
 for i in xrange(E.R.shape[0]): # for each alg version 
   for j in xrange(E.R.shape[1]): # for each parameter set for the alg version 
     for k in xrange(E.R.shape[2]): # for each data set parameter set 
 
       anomalies_list = []
       gt_list = []
       for ic in xrange(D.shape[0]):  # for each initial condition
 
         # Fetch alg
         F = E.F_dict[E.R[i,j,k]['key']]
         # Fetch data 
         data = np.load(path + '/' + D[ic,k]['file'])
         #data = data.reshape(E.R[i,j,k]['params']['dat']['T'], E.R[i,j,k]['params']['dat']['N'])
         data = zscore_win(data, F.p['z_win'])
 
         '''Initialise'''      
         z_iter = iter(data)
         numStreams = data.shape[1]
         F.re_init(numStreams)
 
         '''Begin Frahst'''
         # Main iterative loop. 
         for zt in z_iter:
           zt = zt.reshape(zt.shape[0],1)   # Convert to a column Vector 
 
           if np.any(F.st['anomaly']):
             F.st['anomaly'][:] = False # reset anomaly var  
 
           '''Frahst Version '''
コード例 #2
0
    for i in xrange(E.R.shape[0]):  # for each alg version
        for j in xrange(
                E.R.shape[1]):  # for each parameter set for the alg version
            for k in xrange(E.R.shape[2]):  # for each data set parameter set

                anomalies_list = []
                gt_list = []
                for ic in xrange(D.shape[0]):  # for each initial condition

                    # Fetch alg
                    F = E.F_dict[E.R[i, j, k]['key']]
                    # Fetch data
                    data = np.load(path + '/' + D[ic, k]['file'])
                    #data = data.reshape(E.R[i,j,k]['params']['dat']['T'], E.R[i,j,k]['params']['dat']['N'])
                    data = zscore_win(data, F.p['z_win'])
                    '''Initialise'''
                    z_iter = iter(data)
                    numStreams = data.shape[1]
                    F.re_init(numStreams)
                    '''Begin Frahst'''
                    # Main iterative loop.
                    for zt in z_iter:
                        zt = zt.reshape(zt.shape[0],
                                        1)  # Convert to a column Vector

                        if np.any(F.st['anomaly']):
                            F.st['anomaly'][:] = False  # reset anomaly var
                        '''Frahst Version '''
                        F.run(zt)
                        # Calculate reconstructed data if needed
コード例 #3
0
                     step=gen_a_step,
                     step_n_back=gen_a_step_n_back,
                     trend=gen_a_periodic_shift)
    '''Setup Data Structure'''
    time_results = np.array([0.0] * dat_change_count)

    for k, n in enumerate(dat_changes['N']):
        # set time sample buffer
        time_sample_list = np.array([0.0] * initial_conditions)
        for i in range(initial_conditions):
            '''Generate Data Set'''
            a['N'] = n
            D = gen_funcs[anomaly_type](**a)
            data = D['data']
            ''' Mean Centering '''
            data = zscore_win(data, 100)
            #data = zscore(data)
            data = np.nan_to_num(data)
            z_iter = iter(data)
            numStreams = data.shape[1]

            # Initialise Algorithm
            F = FRAHST('F-7.A-recS.R-static.S-none', p, numStreams)

            # Start time Profiling
            start = time.time()
            '''Begin Frahst'''
            # Main iterative loop.
            for zt in z_iter:

                zt = zt.reshape(zt.shape[0], 1)  # Convert to a column Vector
コード例 #4
0
                   trend = gen_a_periodic_shift)  


  '''Setup Data Structure'''  
  time_results = np.array([0.0]* dat_change_count)

  for k,n in enumerate(dat_changes['N']):
    # set time sample buffer
    time_sample_list = np.array([0.0]*initial_conditions)
    for i in range(initial_conditions):      
      '''Generate Data Set'''
      a['N'] = n
      D = gen_funcs[anomaly_type](**a)  
      data = D['data']    
      ''' Mean Centering '''
      data = zscore_win(data, 100)
      #data = zscore(data)
      data = np.nan_to_num(data)
      z_iter = iter(data)
      numStreams = data.shape[1]      
    
      # Initialise Algorithm
      F = FRAHST('F-7.A-recS.R-static.S-none', p, numStreams)

      # Start time Profiling 
      start = time.time() 
  
      '''Begin Frahst'''
      # Main iterative loop. 
      for zt in z_iter: