def get_compressed(year,month,day,hour): prmsl=twcr.load('prmsl',datetime.datetime(year,month,day,hour), version='2c') prmsl=to_analysis_grid(prmsl.extract(iris.Constraint(member=1))) t2m=twcr.load('air.2m',datetime.datetime(year,month,day,hour), version='2c') t2m=to_analysis_grid(t2m.extract(iris.Constraint(member=1))) u10m=twcr.load('uwnd.10m',datetime.datetime(year,month,day,hour), version='2c') u10m=to_analysis_grid(u10m.extract(iris.Constraint(member=1))) v10m=twcr.load('vwnd.10m',datetime.datetime(year,month,day,hour), version='2c') v10m=to_analysis_grid(v10m.extract(iris.Constraint(member=1))) insol=to_analysis_grid(load_insolation(year,month,day,hour)) # Convert the validation data into tensor format t2m_t = tf.convert_to_tensor(normalise_t2m(t2m.data),numpy.float32) t2m_t = tf.reshape(t2m_t,[79,159,1]) prmsl_t = tf.convert_to_tensor(normalise_prmsl(prmsl.data),numpy.float32) prmsl_t = tf.reshape(prmsl_t,[79,159,1]) u10m_t = tf.convert_to_tensor(normalise_wind(u10m.data),numpy.float32) u10m_t = tf.reshape(u10m_t,[79,159,1]) v10m_t = tf.convert_to_tensor(normalise_wind(v10m.data),numpy.float32) v10m_t = tf.reshape(v10m_t,[79,159,1]) insol_t = tf.convert_to_tensor(normalise_insolation(insol.data),numpy.float32) insol_t = tf.reshape(insol_t,[79,159,1]) ict = tf.concat([t2m_t,prmsl_t,u10m_t,v10m_t,insol_t],2) # Now [79,159,5] ict = tf.reshape(ict,[1,79,159,5]) result = autoencoder.predict_on_batch(ict) result = tf.reshape(result,[79,159,5]) ls = encoder.predict_on_batch(ict) # Convert the encoded fields back to unnormalised cubes t2m_r=t2m.copy() t2m_r.data = tf.reshape(result.numpy()[:,:,0],[79,159]).numpy() t2m_r.data = unnormalise_t2m(t2m_r.data) prmsl_r=prmsl.copy() prmsl_r.data = tf.reshape(result.numpy()[:,:,1],[79,159]).numpy() prmsl_r.data = unnormalise_prmsl(prmsl_r.data) u10m_r=u10m.copy() u10m_r.data = tf.reshape(result.numpy()[:,:,2],[79,159]).numpy() u10m_r.data = unnormalise_wind(u10m_r.data) v10m_r=v10m.copy() v10m_r.data = tf.reshape(result.numpy()[:,:,3],[79,159]).numpy() v10m_r.data = unnormalise_wind(v10m_r.data) return {'t2m':t2m_r,'prmsl':prmsl_r,'u10m':u10m_r,'v10m':v10m_r,'ls':ls}
u10m = twcr.load('uwnd.10m', datetime.datetime(2010, 3, 12, 18), version='2c') u10m = to_analysis_grid(u10m.extract(iris.Constraint(member=1))) v10m = twcr.load('vwnd.10m', datetime.datetime(2010, 3, 12, 18), version='2c') v10m = to_analysis_grid(v10m.extract(iris.Constraint(member=1))) insol = to_analysis_grid(load_insolation(2010, 3, 12, 18)) # Convert the validation data into tensor format t2m_t = tf.convert_to_tensor(normalise_t2m(t2m.data), numpy.float32) t2m_t = tf.reshape(t2m_t, [79, 159, 1]) prmsl_t = tf.convert_to_tensor(normalise_prmsl(prmsl.data), numpy.float32) prmsl_t = tf.reshape(prmsl_t, [79, 159, 1]) u10m_t = tf.convert_to_tensor(normalise_wind(u10m.data), numpy.float32) u10m_t = tf.reshape(u10m_t, [79, 159, 1]) v10m_t = tf.convert_to_tensor(normalise_wind(v10m.data), numpy.float32) v10m_t = tf.reshape(v10m_t, [79, 159, 1]) insol_t = tf.convert_to_tensor(normalise_insolation(insol.data), numpy.float32) insol_t = tf.reshape(insol_t, [79, 159, 1]) # Get autoencoded versions of the validation data model_save_file = ("%s/ML_GCM/autoencoder.tst/" + "Epoch_%04d/autoencoder") % ( os.getenv('SCRATCH'), args.epoch) autoencoder = tf.keras.models.load_model(model_save_file, compile=False) ict = tf.concat([t2m_t, prmsl_t, u10m_t, v10m_t, insol_t], 2) # Now [79,159,5] ict = tf.reshape(ict, [1, 79, 159, 5]) result = autoencoder.predict_on_batch(ict) result = tf.reshape(result, [79, 159, 5]) # Convert the encoded fields back to unnormalised cubes t2m_r = t2m.copy() t2m_r.data = tf.reshape(result.numpy()[:, :, 0], [79, 159]).numpy() t2m_r.data = unnormalise_t2m(t2m_r.data)
# Don't distinguish between training and test for insolation. # Make a 'test' directory that's a copy of the 'training' directory' tstdir = os.path.dirname(args.opfile).replace('training','test') if not os.path.exists(tstdir): os.symlink(os.path.dirname(args.opfile),tstdir) # Load the 20CR2c data as an iris cube time_constraint=iris.Constraint(time=iris.time.PartialDateTime( year=args.year, month=args.month, day=args.day, hour=args.hour)) ic=iris.load_cube("%s/20CR/version_2c/ensmean/cduvb.1969.nc" % os.getenv('DATADIR'), iris.Constraint(name='3-hourly Clear Sky UV-B Downward Solar Flux') & time_constraint) coord_s=iris.coord_systems.GeogCS(iris.fileformats.pp.EARTH_RADIUS) ic.coord('latitude').coord_system=coord_s ic.coord('longitude').coord_system=coord_s # Standardise ic=to_analysis_grid(ic) ic.data=normalise_insolation(ic.data) # Convert to Tensor ict=tf.convert_to_tensor(ic.data, numpy.float32) # Write to file sict=tf.serialize_tensor(ict) tf.write_file(args.opfile,sict)