コード例 #1
0
    minutes, seconds = divmod(solve_time, 60)
    print(
        "\n\n--- Took {0:.0f} minutes and {1:.0f} seconds to solve ---".format(
            minutes, seconds))
del start_time, solve_time

# Extract the state variables for easy plotting etc
v = initialise_var_names(u, idx, 'out function')

# Extract the algebraic variables for easy plotting etc
a = set_algebraic_variables(u, t, idx, input_data, total_waveform,
                            'out function')
del total_waveform, input_data

# Solve for the normalised CBF, CBV, CMRO2, HbO, HbR, HbT and BOLD and put into 'a' (solved separately from odeint as they depend on the steady state conditions)
a = solve_normalised_hemodynamics(a, v, t)

# The variables that can be plotted sorted into alphabetical order
state_vars = sorted(vars(v).keys())
#print("\nState variables: \n", state_vars, "\n")
alg_vars = sorted(vars(a).keys())
#print("Algebraic variables: \n", alg_vars,"\n")
'''Plotting parameters'''
if p.startpulse < p.Tend:
    time = t / 1e3 - p.startpulse / 1e3  # Time in seconds, normalised so t=0 at the start of stimulation
    xlim1 = p.startpulse / 1e3 - 10  # Set left xlimit to 10 sec before stimulation begins
else:
    time = t / 1e3  # Time in seconds, not normalised if there is no stimulation
    xlim1 = 0  # Set left xlimit to 0 if there is no stimulation
xlim2 = p.Tend / 1e3  # Set right xlimit to end of simulation
del t
コード例 #2
0
def single_eval(QoI_flag, Param_Index, change_value):

    iteration = [Param_Index, change_value]
    data_choice = 'pre'

    import sys
    sys.path.append("./Model_Codes/")

    # Import modules
    from scipy.integrate import odeint
    from scipy import io
    from scipy.interpolate import interp1d
    import numpy as np
    import time
    import matplotlib.pyplot as plt
    import warnings
    from matplotlib.patches import Rectangle

    # Local files
    from indices import set_indices
    from ICs import set_initial_conditions
    from ODEsystem import func
    from algebraic_variables import set_algebraic_variables
    from state_variable_names import initialise_var_names
    from normalised_hemo import solve_normalised_hemodynamics
    from plotting_functions import plot_variables_singles, plot_variables_samegraph
    from model_functions import T_pulses
    from parameters import p_function
    import import_mat_files_no_fig as im

    from multipliers import V_IC

    if data_choice == 'pre':
        p = p_function(iteration, 'normal')
    elif data_choice == 'post':
        p = p_function(iteration, 'LNAME')

    # Calculate the start time
    start_time = time.time()

    # Initialise indices, initial conditions and time vector
    idx = set_indices()
    u0 = set_initial_conditions(idx, V_IC)
    t = np.arange(start=0, stop=p.Tend + p.dt, step=p.dt)

    # Import the experimental neural input profile from mat file, for InputCase = 'ZhengData', 'ThalamicTrianglesZheng' or 'ZhengFittedParams'
    input_data = im.import_Zheng_neural_data(p, t)

    # Generate the multiple triangular pulse input profile for the thalamic input T(t), for InputCase = 'ThalamicTriangles' or 'ThalamicTrianglesZheng'
    total_waveform = T_pulses(p)

    # Solve ODE system
    #print("\n Model simulation successfully started\n")
    u, solver_details = odeint(func,
                               u0,
                               t,
                               args=(p, idx, input_data, total_waveform,
                                     start_time),
                               hmax=1e2,
                               full_output=1)
    if solver_details['message'] == 'Integration successful.':
        del solver_details

    # Print total time taken
    solve_time = time.time() - start_time
    if solve_time < 60.0:
        print("\n\n--- Took {0:.0f} seconds to solve ---".format(solve_time))
    else:
        minutes, seconds = divmod(solve_time, 60)
        print("\n\n--- Took {0:.0f} minutes and {1:.0f} seconds to solve ---".
              format(minutes, seconds))
    del start_time, solve_time

    # Extract the state variables for easy plotting etc
    v = initialise_var_names(u, idx, 'out function')

    # Extract the algebraic variables for easy plotting etc
    a = set_algebraic_variables(p, u, t, idx, input_data, total_waveform,
                                'out function')
    del total_waveform, input_data

    # Solve for the normalised CBF, CBV, CMRO2, HbO, HbR, HbT and BOLD and put into 'a' (solved separately from odeint as they depend on the steady state conditions)
    a = solve_normalised_hemodynamics(p, a, v, t)

    # The variables that can be plotted sorted into alphabetical order
    state_vars = sorted(vars(v).keys())
    #print("\nState variables: \n", state_vars, "\n")
    alg_vars = sorted(vars(a).keys())
    #print("Algebraic variables: \n", alg_vars,"\n")

    if p.startpulse < p.Tend:
        time = t / 1e3 - p.startpulse / 1e3  # Time in seconds, normalised so t=0 at the start of stimulation
        xlim1 = p.startpulse / 1e3 - 10  # Set left xlimit to 10 sec before stimulation begins
    else:
        time = t / 1e3  # Time in seconds, not normalised if there is no stimulation
        xlim1 = 0  # Set left xlimit to 0 if there is no stimulation
        xlim2 = p.Tend / 1e3  # Set right xlimit to end of simulation
    del t

    pulse_marker = np.where(time >= 0.0)
    pulse_marker = pulse_marker[0][0]

    pre_pulse_marker = np.where(time >= -5.0)
    pre_pulse_marker = pre_pulse_marker[0][0]

    pre_end_marker = np.where(time >= time[-1] - 5.0)
    pre_end_marker = pre_end_marker[0][0]

    radius = v.R
    radius = radius / radius[pulse_marker]

    clean_flag = 0
    if not np.all(np.isfinite(radius)):
        clean_flag = -2
    elif not np.all(np.isreal(radius)):
        clean_flag = -3
    elif np.amax(abs(radius[pre_pulse_marker:pulse_marker + 1] - 1)) > 1e-3:
        clean_flag = -4
    elif np.amax(abs(radius[pre_end_marker:] - 1)) > 1e-3:
        clean_flag = -5
    elif np.amin(abs(radius[pulse_marker:])) < 0.9:
        clean_flag = -6
    else:
        clean_flag = 1

    if clean_flag != 1:
        QoI = 100
    else:

        # Set custom xlims if wanted
        if data_choice == 'pre':
            dataset = 'tots_LNAME_pre'
        elif data_choice == 'post':
            dataset = 'tots_LNAME_post'

        #sys.path.remove("./Model_Codes/")

        Data = im.import_Berwick_HET_LNAME_Data(dataset, area='Whisker')

        if QoI_flag == 0:
            interpolator = interp1d(time, a.HBO_N)
            HBO_interp = interpolator(Data.time)
            Error_HBO = HBO_interp - Data.HbOwhisk_mean
            Error_HBO = list(map(lambda x: x * x, Error_HBO))
            Error = Error_HBO
        elif QoI_flag == 1:
            interpolator = interp1d(time, a.HBR_N)
            HBR_interp = interpolator(Data.time)
            Error_HBR = HBR_interp - Data.HbRwhisk_mean
            Error_HBR = list(map(lambda x: x * x, Error_HBR))
            Error = Error_HBR

        QoI = Error

    return QoI