minutes, seconds = divmod(solve_time, 60) print( "\n\n--- Took {0:.0f} minutes and {1:.0f} seconds to solve ---".format( minutes, seconds)) del start_time, solve_time # Extract the state variables for easy plotting etc v = initialise_var_names(u, idx, 'out function') # Extract the algebraic variables for easy plotting etc a = set_algebraic_variables(u, t, idx, input_data, total_waveform, 'out function') del total_waveform, input_data # Solve for the normalised CBF, CBV, CMRO2, HbO, HbR, HbT and BOLD and put into 'a' (solved separately from odeint as they depend on the steady state conditions) a = solve_normalised_hemodynamics(a, v, t) # The variables that can be plotted sorted into alphabetical order state_vars = sorted(vars(v).keys()) #print("\nState variables: \n", state_vars, "\n") alg_vars = sorted(vars(a).keys()) #print("Algebraic variables: \n", alg_vars,"\n") '''Plotting parameters''' if p.startpulse < p.Tend: time = t / 1e3 - p.startpulse / 1e3 # Time in seconds, normalised so t=0 at the start of stimulation xlim1 = p.startpulse / 1e3 - 10 # Set left xlimit to 10 sec before stimulation begins else: time = t / 1e3 # Time in seconds, not normalised if there is no stimulation xlim1 = 0 # Set left xlimit to 0 if there is no stimulation xlim2 = p.Tend / 1e3 # Set right xlimit to end of simulation del t
def single_eval(QoI_flag, Param_Index, change_value): iteration = [Param_Index, change_value] data_choice = 'pre' import sys sys.path.append("./Model_Codes/") # Import modules from scipy.integrate import odeint from scipy import io from scipy.interpolate import interp1d import numpy as np import time import matplotlib.pyplot as plt import warnings from matplotlib.patches import Rectangle # Local files from indices import set_indices from ICs import set_initial_conditions from ODEsystem import func from algebraic_variables import set_algebraic_variables from state_variable_names import initialise_var_names from normalised_hemo import solve_normalised_hemodynamics from plotting_functions import plot_variables_singles, plot_variables_samegraph from model_functions import T_pulses from parameters import p_function import import_mat_files_no_fig as im from multipliers import V_IC if data_choice == 'pre': p = p_function(iteration, 'normal') elif data_choice == 'post': p = p_function(iteration, 'LNAME') # Calculate the start time start_time = time.time() # Initialise indices, initial conditions and time vector idx = set_indices() u0 = set_initial_conditions(idx, V_IC) t = np.arange(start=0, stop=p.Tend + p.dt, step=p.dt) # Import the experimental neural input profile from mat file, for InputCase = 'ZhengData', 'ThalamicTrianglesZheng' or 'ZhengFittedParams' input_data = im.import_Zheng_neural_data(p, t) # Generate the multiple triangular pulse input profile for the thalamic input T(t), for InputCase = 'ThalamicTriangles' or 'ThalamicTrianglesZheng' total_waveform = T_pulses(p) # Solve ODE system #print("\n Model simulation successfully started\n") u, solver_details = odeint(func, u0, t, args=(p, idx, input_data, total_waveform, start_time), hmax=1e2, full_output=1) if solver_details['message'] == 'Integration successful.': del solver_details # Print total time taken solve_time = time.time() - start_time if solve_time < 60.0: print("\n\n--- Took {0:.0f} seconds to solve ---".format(solve_time)) else: minutes, seconds = divmod(solve_time, 60) print("\n\n--- Took {0:.0f} minutes and {1:.0f} seconds to solve ---". format(minutes, seconds)) del start_time, solve_time # Extract the state variables for easy plotting etc v = initialise_var_names(u, idx, 'out function') # Extract the algebraic variables for easy plotting etc a = set_algebraic_variables(p, u, t, idx, input_data, total_waveform, 'out function') del total_waveform, input_data # Solve for the normalised CBF, CBV, CMRO2, HbO, HbR, HbT and BOLD and put into 'a' (solved separately from odeint as they depend on the steady state conditions) a = solve_normalised_hemodynamics(p, a, v, t) # The variables that can be plotted sorted into alphabetical order state_vars = sorted(vars(v).keys()) #print("\nState variables: \n", state_vars, "\n") alg_vars = sorted(vars(a).keys()) #print("Algebraic variables: \n", alg_vars,"\n") if p.startpulse < p.Tend: time = t / 1e3 - p.startpulse / 1e3 # Time in seconds, normalised so t=0 at the start of stimulation xlim1 = p.startpulse / 1e3 - 10 # Set left xlimit to 10 sec before stimulation begins else: time = t / 1e3 # Time in seconds, not normalised if there is no stimulation xlim1 = 0 # Set left xlimit to 0 if there is no stimulation xlim2 = p.Tend / 1e3 # Set right xlimit to end of simulation del t pulse_marker = np.where(time >= 0.0) pulse_marker = pulse_marker[0][0] pre_pulse_marker = np.where(time >= -5.0) pre_pulse_marker = pre_pulse_marker[0][0] pre_end_marker = np.where(time >= time[-1] - 5.0) pre_end_marker = pre_end_marker[0][0] radius = v.R radius = radius / radius[pulse_marker] clean_flag = 0 if not np.all(np.isfinite(radius)): clean_flag = -2 elif not np.all(np.isreal(radius)): clean_flag = -3 elif np.amax(abs(radius[pre_pulse_marker:pulse_marker + 1] - 1)) > 1e-3: clean_flag = -4 elif np.amax(abs(radius[pre_end_marker:] - 1)) > 1e-3: clean_flag = -5 elif np.amin(abs(radius[pulse_marker:])) < 0.9: clean_flag = -6 else: clean_flag = 1 if clean_flag != 1: QoI = 100 else: # Set custom xlims if wanted if data_choice == 'pre': dataset = 'tots_LNAME_pre' elif data_choice == 'post': dataset = 'tots_LNAME_post' #sys.path.remove("./Model_Codes/") Data = im.import_Berwick_HET_LNAME_Data(dataset, area='Whisker') if QoI_flag == 0: interpolator = interp1d(time, a.HBO_N) HBO_interp = interpolator(Data.time) Error_HBO = HBO_interp - Data.HbOwhisk_mean Error_HBO = list(map(lambda x: x * x, Error_HBO)) Error = Error_HBO elif QoI_flag == 1: interpolator = interp1d(time, a.HBR_N) HBR_interp = interpolator(Data.time) Error_HBR = HBR_interp - Data.HbRwhisk_mean Error_HBR = list(map(lambda x: x * x, Error_HBR)) Error = Error_HBR QoI = Error return QoI