def test_report(self): enter_crit = criteria.Above(self.symbol.close, 25.88) exit_crit = criteria.BarsSinceLong(self.symbol, 1) enter_crit_group = criteria_group.CriteriaGroup([enter_crit], Long(), self.symbol) exit_crit_group = criteria_group.CriteriaGroup([exit_crit], LongExit(), self.symbol) tp = trading_profile.TradingProfile(10000, trading_amount.StaticAmount(5000), trading_fee.StaticFee(0)) strat = strategy.Strategy(self.d, [enter_crit_group, exit_crit_group], tp) strat.simulate() report_overview = strat.report.overview() self.assertAlmostEqual(report_overview['net_profit'], 7.68) self.assertAlmostEqual(report_overview['average_gains'], 0.153256704981) enter_crit = criteria.Above(self.symbol.close, 25.88) exit_crit = criteria.BarsSinceShort(self.symbol, 1) enter_crit_group = criteria_group.CriteriaGroup([enter_crit], Short(), self.symbol) exit_crit_group = criteria_group.CriteriaGroup([exit_crit], ShortExit(), self.symbol) tp = trading_profile.TradingProfile(10000, trading_amount.StaticAmount(5000), trading_fee.StaticFee(0)) strat = strategy.Strategy(self.d, [enter_crit_group, exit_crit_group], tp) strat.simulate() report_overview = strat.report.overview() self.assertAlmostEqual(report_overview['net_profit'], -7.68) self.assertAlmostEqual(report_overview['average_gains'], -0.15325670498086685) enter_crit = criteria.Above(self.symbol.close, 50) exit_crit = criteria.BarsSinceLong(self.symbol, 1) enter_crit_group = criteria_group.CriteriaGroup([enter_crit], Long(), self.symbol) exit_crit_group = criteria_group.CriteriaGroup([exit_crit], LongExit(), self.symbol) tp = trading_profile.TradingProfile(10000, trading_amount.StaticAmount(5000), trading_fee.StaticFee(0)) strat = strategy.Strategy(self.d, [enter_crit_group, exit_crit_group], tp) strat.simulate() pretty_overview = strat.report.pretty_overview() no_trades = pretty_overview.split('\n')[0] self.assertEqual(no_trades, 'No trades')
def test_simple_short_strategy(self): enter_crit = criteria.Above(self.symbol.close, 25.88) exit_crit = criteria.BarsSinceShort(self.symbol, 2) enter_crit_group = criteria_group.CriteriaGroup([enter_crit], Short(), self.symbol) exit_crit_group = criteria_group.CriteriaGroup([exit_crit], ShortExit(), self.symbol) tp = trading_profile.TradingProfile(10000, trading_amount.StaticAmount(5000), trading_fee.StaticFee(5)) self.assertEquals( tp.__repr__(), 'TradingProfile(capital=10000, trading_amount=StaticAmount(amount=5000, round_up=False), trading_fee=StaticFee(fee=5), slippage=0.0' ) strat = strategy.Strategy(self.d, [enter_crit_group, exit_crit_group], tp) strat.simulate() report_overview = strat.report.overview() self.assertAlmostEqual(strat.realtime_data_frame.iloc[4]['PL_MSFT'], report_overview['net_profit']) self.assertTrue( np.isnan(strat.realtime_data_frame.iloc[0]['CHANGE_PERCENT_MSFT'])) self.assertTrue( np.isnan(strat.realtime_data_frame.iloc[5]['CHANGE_VALUE_MSFT'])) self.assertEqual(strat.realtime_data_frame.iloc[0]['ACTIONS_MSFT'], 0) self.assertEqual(strat.realtime_data_frame.iloc[1]['ACTIONS_MSFT'], 2) self.assertEqual(strat.realtime_data_frame.iloc[2]['ACTIONS_MSFT'], 0) self.assertEqual(strat.realtime_data_frame.iloc[3]['ACTIONS_MSFT'], 0) self.assertEqual(strat.realtime_data_frame.iloc[4]['ACTIONS_MSFT'], -2) self.assertEqual(strat.realtime_data_frame.iloc[5]['ACTIONS_MSFT'], 0) self.assertEqual(strat.realtime_data_frame.iloc[0]['STATUS_MSFT'], 0) self.assertEqual(strat.realtime_data_frame.iloc[1]['STATUS_MSFT'], -1) self.assertEqual(strat.realtime_data_frame.iloc[2]['STATUS_MSFT'], -1) self.assertEqual(strat.realtime_data_frame.iloc[3]['STATUS_MSFT'], -1) self.assertEqual(strat.realtime_data_frame.iloc[4]['STATUS_MSFT'], 0) self.assertEqual(report_overview['trades'], 1) self.assertEqual(report_overview['winning_trades'], 1) self.assertEqual(report_overview['losing_trades'], 0) self.assertEqual(report_overview['lacking_capital'], 0) self.assertEqual(report_overview['gross_loss'], 0) self.assertEqual(report_overview['gross_profit'], report_overview['net_profit']) self.assertEqual(report_overview['ongoing_trades'], 0) self.assertEqual(report_overview['average_trading_amount'], 5003.5199999999995) self.assertEqual(report_overview['profitability'], 100.00)
def test_bars_since_action(self): crit = criteria.BarsSinceAction(self.one, Long(), 2) self.assertEquals(str(crit), 'BarsSinceAction(symbol=ONE, action=1, periods=2, condition=NONE)') crit = criteria.BarsSinceLongExit(self.one, 3) self.assertTrue(crit.apply(self.data)) crit = criteria.BarsSinceShortExit(self.one, 2) self.assertFalse(crit.apply(self.data)) crit = criteria.BarsSinceShortExit(self.one, 1) self.assertFalse(crit.apply(self.data)) crit = criteria.BarsSinceShortExit(self.one, 0) self.assertTrue(crit.apply(self.data)) crit = criteria.BarsSinceLong(self.one, 4) self.assertFalse(crit.apply(self.data)) crit = criteria.BarsSinceLong(self.one, 5) self.assertTrue(crit.apply(self.data)) crit = criteria.BarsSinceLong(self.one, 6) self.assertFalse(crit.apply(self.data)) crit = criteria.BarsSinceShortExit(self.one, 0, 'under') self.assertFalse(crit.apply(self.data)) crit = criteria.BarsSinceShortExit(self.one, 1, 'under') self.assertTrue(crit.apply(self.data)) crit = criteria.BarsSinceShortExit(self.one, 2, 'under') self.assertTrue(crit.apply(self.data)) crit = criteria.BarsSinceLong(self.one, 5, 'under') self.assertFalse(crit.apply(self.data)) crit = criteria.BarsSinceLong(self.one, 6, 'under') self.assertTrue(crit.apply(self.data)) crit = criteria.BarsSinceLong(self.one, 7, 'under') self.assertTrue(crit.apply(self.data)) crit = criteria.BarsSinceShortExit(self.one, 1, 'over') self.assertFalse(crit.apply(self.data)) crit = criteria.BarsSinceShortExit(self.one, 0, 'over') self.assertFalse(crit.apply(self.data)) crit = criteria.BarsSinceShort(self.one, 0, 'over') self.assertTrue(crit.apply(self.data)) crit = criteria.BarsSinceLong(self.one, 4, 'over') self.assertTrue(crit.apply(self.data)) crit = criteria.BarsSinceLong(self.one, 5, 'over') self.assertFalse(crit.apply(self.data)) crit = criteria.BarsSinceLong(self.one, 6, 'over') self.assertFalse(crit.apply(self.data))
# Our random forest will spit out a prediction price for 5 bars in the future # We still need a threshold to determine whether or not we want to enter the trade # Let's define a TI that is $5 higher than the random forest's prediction threshold_above = technical_indicator.Addition(random_forest.value, 5) test_dataset.add_technical_indicator(threshold_above) # And $5 lower than the neural network's prediction threshold_below = technical_indicator.Subtraction(random_forest.value, 5) test_dataset.add_technical_indicator(threshold_below) # Criteria # Current price is below the threshold of our random forest's prediction price enter_crit_long = criteria.Below(symbol.close, threshold_below.value) # Current price is above the threshold of our random forest's prediction price enter_crit_short = criteria.Above(symbol.close, threshold_above.value) # Exit after 5 days - as per the random forest's build parameters exit_crit_long = criteria.BarsSinceLong(symbol, 5) exit_crit_short = criteria.BarsSinceShort(symbol, 5) # Criteria Groups enter_crit_group1 = criteria_group.CriteriaGroup([enter_crit_long], Long(), symbol) enter_crit_group2 = criteria_group.CriteriaGroup([enter_crit_short], Short(), symbol) exit_crit_group1 = criteria_group.CriteriaGroup([exit_crit_long], LongExit(), symbol) exit_crit_group2 = criteria_group.CriteriaGroup([exit_crit_short], ShortExit(), symbol) # Trading Profile tp = trading_profile.TradingProfile(100000, trading_amount.StaticAmount(10000), trading_fee.StaticFee(5)) # Strategy strat = strategy.Strategy( test_dataset,