コード例 #1
0
    def test_execute_extracts_visibility_comparison_and_concatenate_other_features(
            self):
        arff_data = arff.load(
            self.generate_arff("""13,17,1,2,3,4,5,6,7,8,100,0.12,360,414,0.3,0
0,0,100,150,20,15,10,15,20,33,1000,0.25,360,380,0.15,0""",
                               extractors=[
                                   ComplexityExtractor(),
                                   ImageComparisonExtractor(),
                                   SizeViewportExtractor(),
                                   VisibilityExtractor()
                               ]))
        arff_data['data'] = np.array(arff_data['data'])
        arff_data['X'] = np.array([[1, 7], [7, 7]])
        arff_data['features'] = ['super', 'bash']
        result = self.extractor.execute(arff_data)
        # right = (354 - 360) - (406 - 414)
        self.assertEqual(1, result['X'][0][0])
        self.assertEqual(7, result['X'][0][1])
        self.assertEqual(2, result['X'][0][10])
        self.assertEqual(53, result['X'][0][11])
        # right = (240 - 360) - (197 - 380)
        self.assertEqual(7, result['X'][1][0])
        self.assertEqual(7, result['X'][1][1])
        self.assertEqual(63, result['X'][1][10])
        self.assertEqual(-30, result['X'][1][11])
        self.assertEqual([
            'super', 'bash', 'childsNumber', 'textLength', 'area', 'phash',
            'chiSquared', 'imageDiff', 'width_comp', 'height_comp',
            'left_visibility', 'right_visibility'
        ], result['features'])
コード例 #2
0
    def execute(self, dataset):
        print('===== Feature selection - Embeddings Clustering =====')
        texts = [text_data['content'] for text_data in dataset]
        self._vectorizer.fit(texts)

        #if (len(self._vectorizer.vocabulary_) < self._k):
        #    print('Number of unique words is smaller than number of clusters (%d < %d)' %
        #            (len(self._vectorizer.vocabulary_), self._k))
        #    return dataset

        self._embedding_matrix = self._loader.load(self._vectorizer)

        print('===== K-Means %d =====' % (self._k))
        model = KMeans(n_clusters=self._k, random_state=self._random_state)
        np_embedding_matrix = np.array(list(self._embedding_matrix.values()))
        model.fit(np_embedding_matrix)

        print('===== replacing similar words by similarity =====')
        for text_data in dataset:
            tokens = word_tokenize(text_data['content'])
            new_tokens = []
            for token in tokens:
                try:
                    word_embedding = self._embedding_matrix[token]
                    word_cluster = model.predict(np.array([word_embedding]))[0]
                    new_tokens.append('token' + str(word_cluster))
                except:
                    #print('Key not found in index, removing word...')
                    pass

            text_data['content'] = ' '.join(new_tokens)

        return dataset
コード例 #3
0
ファイル: main.py プロジェクト: pacadis/University
def plotData(trainC, trainF, trainO, coef, name):
    noOfPoints = 1000
    xref = []
    val = min(trainC)
    step = (max(trainC) - min(trainF)) / noOfPoints
    xref1 = []
    val1 = min(trainF)
    step1 = (max(trainF) - min((trainF))) / noOfPoints
    for i in range(1, noOfPoints):
        xref.append(val)
        xref1.append(val1)
        val += step
        val1 += step1
    yref = [[coef[0] + coef[1] * x1 + coef[2] * y1]
            for x1, y1 in zip(xref, xref1)]

    ax = plt.axes(projection='3d')
    ax.scatter3D(trainC, trainF, trainO, c='b', marker='o')
    ax.plot_surface(np.array(xref),
                    np.array(xref1),
                    np.array(yref),
                    color='green')
    ax.set_xlabel('Capital')
    ax.set_ylabel('Freedom')
    ax.set_zlabel('Happiness')
    plt.title(name)
    plt.show()
コード例 #4
0
    def execute(self, arff_data, attributes, X):

        base_fonts = arff_data['data'][:, attributes.index('baseFontFamily')]
        one_hot = OneHotEncoder(handle_unknown='ignore', sparse=False)
        label = LabelEncoder()
        label_encoded = label.fit_transform(base_fonts)
        encoded_base_fonts = one_hot.fit_transform(label_encoded.reshape(
            -1, 1))

        target_fonts = arff_data['data'][:,
                                         attributes.index('targetFontFamily')]
        enc = OneHotEncoder(handle_unknown='ignore', sparse=False)
        label = LabelEncoder()
        label_encoded = label.fit_transform(target_fonts)
        encoded_target_fonts = enc.fit_transform(label_encoded.reshape(-1, 1))

        X_list = X
        if (encoded_base_fonts.shape[1] == 1):
            encoded_base_fonts = [encoded_base_fonts.reshape(-1).tolist()]
        else:
            encoded_base_fonts = np.array(encoded_base_fonts).T.tolist()
        for font_column in encoded_base_fonts:
            X_list.append(font_column)
        if (encoded_target_fonts.shape[1] == 1):
            encoded_target_fonts = [encoded_target_fonts.reshape(-1).tolist()]
        else:
            encoded_target_fonts = np.array(encoded_target_fonts).T.tolist()
        for font_column in encoded_target_fonts:
            X_list.append(font_column)

        return X_list
コード例 #5
0
    def test_extractor_implements_execute_method_with_correct_arguments(self):
        X = np.array([[1, 2, 3], [11, 12, 13]])
        arff_string = """1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,1
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,1"""
        (arff_data, attributes) = self.generate_arff(arff_string)
        result = self.extractor.execute(arff_data, attributes, X.T.tolist())
        result = np.array(result).T.tolist()
        self.assertEqual(2, len(result))
        self.assertEqual(X.tolist(), (np.array(result)[0:2, 0:3]).tolist())
コード例 #6
0
 def execute(self, arff_data, attributes, X):
     X.append(arff_data['data'][:, attributes.index('childsNumber')])
     X.append(arff_data['data'][:, attributes.index('textLength')])
     base_width = np.array(arff_data['data'][:, attributes.index('baseWidth')], dtype='float64')
     target_width = np.array(arff_data['data'][:, attributes.index('targetWidth')], dtype='float64')
     base_height = np.array(arff_data['data'][:, attributes.index('baseHeight')], dtype='float64')
     target_height = np.array(arff_data['data'][:, attributes.index('targetHeight')], dtype='float64')
     X.append(np.maximum(base_width * base_height, target_width * target_height))
     arff_data['features'] = arff_data['features'] + ['childsNumber', 'textLength', 'area']
     return X
コード例 #7
0
    def execute(self, arff_data):
        arff_data['features'] = self._features
        attributes = [attribute[0] for attribute in arff_data['attributes']]
        Xt = []
        for feature in self._features:
            Xt.append(arff_data['data'][:, attributes.index(feature)])

        arff_data['X'] = np.array(Xt, dtype='float64').T
        arff_data['y'] = np.array(
            arff_data['data'][:, attributes.index(self._class_label)])

        return arff_data
コード例 #8
0
ファイル: readmnist.py プロジェクト: minglan01/New_repository
def read(startExample, count, digits=None, bTrain=True, path="."):
  if digits == None:
    digits = range(0, 10)

  if bTrain:
    fname_img = os.path.join(path, 'train-images-idx3-ubyte')
    fname_lbl = os.path.join(path, 'train-labels-idx1-ubyte')
  else:
    fname_img = os.path.join(path, 't10k-images-idx3-ubyte')
    fname_lbl = os.path.join(path, 't10k-labels-idx1-ubyte')

  fImages = open(fname_img,'rb')
  fLabels = open(fname_lbl,'rb')

  # read the header information in the images file.
  s1, s2, s3, s4 = fImages.read(4), fImages.read(4), fImages.read(4), fImages.read(4)
  mnIm = struct.unpack('>I',s1)[0]
  numIm = struct.unpack('>I',s2)[0]
  rowsIm = struct.unpack('>I',s3)[0]
  colsIm = struct.unpack('>I',s4)[0]
  # seek to the image we want to start on
  fImages.seek(16+startExample*rowsIm*colsIm)

  # read the header information in the labels file and seek to position
  # in the file for the image we want to start on.
  mnL = struct.unpack('>I',fLabels.read(4))[0]
  numL = struct.unpack('>I',fLabels.read(4))[0]
  fLabels.seek(8+startExample)

  inputVectors = [] # list of (input, correct label) pairs
  labels = []

  for c in range(count):
    # get the correct label from the labels file.
    val = struct.unpack('>B',fLabels.read(1))[0]
    labels.append(val)

    vec = map(lambda x: struct.unpack('>B',fImages.read(1))[0],
              range(rowsIm*colsIm))
    # get the input from the image file
    inputVectors.append(np.array(vec))


  # Filter out the unwanted digits
  ind = [k for k in xrange(len(labels)) if labels[k] in digits ]
  labels = map(lambda x: labels[x], ind)
  inputVectors = map(lambda x: inputVectors[x], ind)

  fImages.close()
  fLabels.close()

  return np.array(inputVectors), np.array(labels)
コード例 #9
0
def _divCross(self, other):
    """
    |u x v| = |u||v|sin(theta)
    """
    A = np.array([[0, -other.z, -other.y], [other.z, 0, other.x],
                  [-other.y, other.x, 0]])

    if not det(A):
        return SpatialVector()

    b = np.array(self.vec)

    return SpatialVector(*A.inv().dot(b))
コード例 #10
0
    def execute(self, arff_data, attributes, X):
        X.append(arff_data['data'][:, attributes.index('phash')])
        X.append(arff_data['data'][:, attributes.index('chiSquared')])

        image_diff = np.array(arff_data['data'][:, attributes.index('imageDiff')], dtype='float64')
        base_width = np.array(arff_data['data'][:, attributes.index('baseWidth')], dtype='float64')
        target_width = np.array(arff_data['data'][:, attributes.index('targetWidth')], dtype='float64')
        base_height = np.array(arff_data['data'][:, attributes.index('baseHeight')], dtype='float64')
        target_height = np.array(arff_data['data'][:, attributes.index('targetHeight')], dtype='float64')
        min_area = np.minimum(base_width * base_height, target_width * target_height)
        X.append(image_diff / (np.maximum(min_area, 1) * 255))
        arff_data['features'] = arff_data['features'] + ['phash', 'chiSquared', 'imageDiff']
        return X
コード例 #11
0
    def hsv(self, path='./photo/4.jpg'):
        # icol = (36,202,59,71,255,255)  # Green
        #icol = (18, 0, 196, 36, 255, 255)  # Yellow
        #icol = (89, 0, 0, 125, 255, 255)  # Blue
        icol = (0, 100, 80, 10, 255, 255)  # Red
        cv.namedWindow('colorTest')
        # Lower range colour sliders.
        cv.createTrackbar('lowHue', 'colorTest', icol[0], 255, self.nothing)
        cv.createTrackbar('lowSat', 'colorTest', icol[1], 255, self.nothing)
        cv.createTrackbar('lowVal', 'colorTest', icol[2], 255, self.nothing)
        # Higher range colour sliders.
        cv.createTrackbar('highHue', 'colorTest', icol[3], 255, self.nothing)
        cv.createTrackbar('highSat', 'colorTest', icol[4], 255, self.nothing)
        cv.createTrackbar('highVal', 'colorTest', icol[5], 255, self.nothing)

        frame = cv.imread(path)

        while True:
            lowHue = cv.getTrackbarPos('lowHue', 'colorTest')
            lowSat = cv.getTrackbarPos('lowSat', 'colorTest')
            lowVal = cv.getTrackbarPos('lowVal', 'colorTest')
            highHue = cv.getTrackbarPos('highHue', 'colorTest')
            highSat = cv.getTrackbarPos('highSat', 'colorTest')
            highVal = cv.getTrackbarPos('highVal', 'colorTest')

            cv.imshow('frame', frame)

            frameBGR = cv.GaussianBlur(frame, (7, 7), 0)

            cv.imshow('blurred', frameBGR)

            hsv = cv.cvtColor(frameBGR, cv.COLOR_BGR2HSV)

            # HSV values to define a colour range.
            colorLow = np.array([lowHue, lowSat, lowVal])
            colorHigh = np.array([highHue, highSat, highVal])
            mask = cv.inRange(hsv, colorLow, colorHigh)
            # Show the first mask
            cv.imshow('mask-plain', mask)

            kernal = cv.getStructuringElement(cv.MORPH_ELLIPSE, (7, 7))
            mask = cv.morphologyEx(mask, cv.MORPH_CLOSE, kernal)
            mask = cv.morphologyEx(mask, cv.MORPH_OPEN, kernal)

            cv.imshow('mask', mask)
            result = cv.bitwise_and(frame, frame, mask=mask)
            cv.imshow('colorTest', result)

            k = cv.waitKey(5) & 0xFF
            if k == 27:
                break
コード例 #12
0
    def test_calling_tunning_methods(self):
        grid_mock = Mock()
        grid_mock.best_params_ = {'params': True}
        data = {
            'X': np.array([[1, 2, 3], [4, 5, 6]]),
            'y': np.array(['none', 'xbi']),
        }
        model = Mock()
        action = ClassifierTunning(grid_mock, model)
        result = action.execute(data)
        grid_mock.fit.assert_called_with(data['X'], data['y'])
        model.set_params.assert_called_with(**grid_mock.best_params_)

        self.assertEqual(model, result['model'])
コード例 #13
0
    def execute(self, arff_data):
        attributes = [attribute[0] for attribute in arff_data['attributes']]
        dataset = arff_data['data']

        X = (arff_data['X'].T.tolist() if 'X' in arff_data else [])

        base_height = np.array(dataset[:, attributes.index('baseHeight')],
                               dtype='float64')
        target_height = np.array(dataset[:,
                                         attributes.index('targetHeight')],
                                 dtype='float64')
        base_width = np.array(dataset[:, attributes.index('baseWidth')],
                              dtype='float64')
        target_width = np.array(dataset[:, attributes.index('targetWidth')],
                                dtype='float64')
        X.append(
            np.minimum(base_height * base_width, target_height * target_width))

        base_x = np.array(dataset[:, attributes.index('baseX')],
                          dtype='float64')
        target_x = np.array(dataset[:, attributes.index('targetX')],
                            dtype='float64')
        base_y = np.array(dataset[:, attributes.index('baseY')],
                          dtype='float64')
        target_y = np.array(dataset[:, attributes.index('targetY')],
                            dtype='float64')
        X.append(
            np.sqrt(
                np.power(np.abs(base_x - target_x), 2) +
                np.power(np.abs(base_y - target_y), 2)))

        X.append(
            np.abs((base_height * base_width) -
                   (target_height * target_width)) / np.maximum(
                       np.minimum(base_height * base_width, target_height *
                                  target_width), np.ones(len(base_height))))

        X.append(dataset[:, attributes.index('chiSquared')])

        arff_data['X'] = np.array(X, dtype='float64').T
        prev_features = (arff_data['features']
                         if 'features' in arff_data else [])
        arff_data['features'] = prev_features + [
            'area', 'displacement', 'sdr', 'chisquared'
        ]
        arff_data['y'] = np.array(
            arff_data['data'][:, attributes.index(self._class_attr)],
            dtype='int16')
        return arff_data
コード例 #14
0
    def execute(self, arff_data):
        arff_data['features'] = (arff_data['features'] if 'features' in arff_data else [])

        attributes = [ attribute[0]
                for attribute in arff_data['attributes'] ]

        X = (arff_data['X'].T.tolist() if 'X' in arff_data else [])

        for extractor in self._extractors:
            X = extractor.execute(arff_data, attributes, X)

        arff_data['X'] = np.array(X, dtype='float64').T
        arff_data['y'] = np.array(arff_data['data'][:, attributes.index(self._class_attr)], dtype='float64')

        return arff_data
def waitcontours():
    while(1) :
        ret, frame = cap.read()

        gray = cv.cvtColor(frame, cv.COLOR_RGB2GRAY)  # name of the variable

        lower = np.array([160])
        upper = np.array([255])

        # smooth the image thresholded
        mask = cv.blur(cv.inRange(gray, lower, upper), ksize=(3, 3))

        contours, hierarchy = cv.findContours(mask, cv.RETR_LIST, cv.CHAIN_APPROX_NONE)
        if contours:
            break
コード例 #16
0
    def test_real_dataset_for_measuring_X_matrix_conformance(self):
        arff_data = self.generate_arff("""1,2,3,Arial,Bonito,1
7,8,9,Deustrech,Arial,1
10,11,12,Bonito,Arial,1
4,5,6,Bonito,Deustrech,1""")
        X = np.ones(np.array(arff_data['data']).shape)
        y = np.ones(X.shape[0])
        arguments = {
            'X': X,
            'y': y,
            'attributes': arff_data['attributes'],
            'data': np.array(arff_data['data'])
        }
        result = self.extractor.execute(arguments)
        self.assertEqual(y.shape[0], result['X'].shape[0])
コード例 #17
0
    def get_metric_value(self, stablization_window_size, ipList):
        metrics_per_network = []
        for ip in range(0, len(ipList)):
            prometheus_url = ipList[ip]
            # prometheus_query_url = "http://{}:19999/api/v1/allmetrics?format=prometheus".format(prometheus_url)
            prometheus_query_url = "http://{}:19999/api/v1/data?chart=transit_xdp.pps&after=-1".format(
                prometheus_url)
            response = requests.get(prometheus_query_url).json()
            # print(response['data'][0][1])
            metric_value = response['data'][0][
                1]  # the transit_xdp.pps metrics
            '''Write the data to the metric queue'''
            poll_interval_seconds = self.config['poll_interval_seconds']
            # print(math.ceil(stablization_window_size/poll_interval_seconds))
            if len(self.metric_queue) > math.ceil(
                    stablization_window_size / poll_interval_seconds):
                self.deQueue()
                self.enQueue(metric_value)
            else:
                self.enQueue(metric_value)

            metric_matrix = np.array([self.metric_queue])
            # print("metrics Queue: {}".format(self.metric_queue))
            # print("len(metric_matrix): {}".format(len(metric_matrix)))
            # print("metric_matrix: {}".format(metric_matrix))
            ''' Calculate the average value (per bouncer) in the Window '''
            ''' Append the "per bouncer" metrics to "per network" metrics '''
            metrics_per_network.append(
                metric_matrix.mean(axis=1))  # Mean by row
            # print("metrics_per_net: {}".format(metrics_per_network))
        # print("metrics_per_net: {}".format(metrics_per_network[0]))
        return metrics_per_network[0]
コード例 #18
0
ファイル: __init__.py プロジェクト: RicherMans/DigitalIMP
def separateOtsu(picture):
    hist_count = np.array([i for i in range(GRAYLEVEL)])
    for x in range(len(picture)):
        for y in range(len(picture[0])):
            grayscale = picture[x][y]
            hist_count[grayscale] += 1
    return hist_count
コード例 #19
0
 def img_kernel(self, img):
     #     kernel=np.ones([5,5],np.float32)/25
     #     kernel=np.array([[0,1,0],[0,1,0],[0,1,0]],np.float32)/3
     #过滤片
     kernel = np.array([[1, 0, -1], [1, 0, -1], [1, 0, -1]], np.float32)
     dst = cv.filter2D(img, -1, kernel)
     return dst
コード例 #20
0
    def watermark(self, src_path, mask_path, alpha=0.3):
        img = cv.imread(src_path)
        h, w = img.shape[0], img.shape[1]
        mask = cv.imread(mask_path, cv.IMREAD_UNCHANGED)
        if w > h:
            rate = int(w * 0.1) / mask.shape[1]
        else:
            rate = int(h * 0.1) / mask.shape[0]
        mask = cv.resize(mask, None, fx=rate, fy=rate)
        mask_h, mask_w = mask.shape[0], mask.shape[1]
        mask_channels = cv.split(mask)
        dst_channels = cv.split(img)
        b, g, r, a = cv.split(mask)

        # 计算mask在图片的坐标
        ul_points = (int(h * 0.9), int(int(w / 2) - mask_w / 2))
        dr_points = (int(h * 0.9) + mask_h, int(int(w / 2) + mask_w / 2))
        for i in range(3):
            dst_channels[i][ul_points[0]:dr_points[0],
                            ul_points[1]:dr_points[1]] = dst_channels[i][
                                ul_points[0]:dr_points[0],
                                ul_points[1]:dr_points[1]] * (255.0 -
                                                              a * alpha) / 255
            dst_channels[i][ul_points[0]:dr_points[0],
                            ul_points[1]:dr_points[1]] += np.array(
                                mask_channels[i] * (a * alpha / 255),
                                dtype=np.uint8)
        dst_img = cv.merge(dst_channels)
        self.show_img(dst_img)
コード例 #21
0
ファイル: va_test.py プロジェクト: tyommik/Autopilot
def select_rgb_blue_black(image):
    # define range of blue color in HSV
    lower_blue = np.array([110, 50, 50])
    upper_blue = np.array([130, 255, 255])

    blue_mask = cv2.inRange(image, lower_blue, upper_blue)
    # define range of black color in HSV
    lower_black = np.array([0, 0, 0])
    upper_black = np.array([170, 100, 50])
    # Threshold the HSV image to get only blue colors
    black_mask = cv2.inRange(image, lower_black, upper_black)

    # Bitwise-AND mask and original image
    mask = cv2.bitwise_or(blue_mask, black_mask)
    res = cv2.bitwise_and(image, image, mask=blue_mask)
    return mask
コード例 #22
0
 def execute(self, arff_data, attributes, X):
     base_width = np.array(arff_data['data'][:, attributes.index('baseWidth')], dtype='float64')
     target_width = np.array(arff_data['data'][:, attributes.index('targetWidth')], dtype='float64')
     base_viewport = np.array(arff_data['data'][:, attributes.index('baseViewportWidth')], dtype='float64')
     target_viewport = np.array(arff_data['data'][:, attributes.index('targetViewportWidth')], dtype='float64')
     base_left = np.array(arff_data['data'][:, attributes.index('baseX')], dtype='float64')
     base_right = np.array(base_viewport - (base_left + base_width), dtype='float64')
     target_left = np.array(arff_data['data'][:, attributes.index('targetX')], dtype='float64')
     target_right = np.array(target_viewport - (target_left + target_width), dtype='float64')
     X.append(np.abs((base_left - target_left) / np.maximum(np.abs(base_viewport - target_viewport), 1)))
     X.append(np.abs((base_right - target_right) / np.maximum(np.abs(base_viewport - target_viewport), 1)))
     base_y = np.array(arff_data['data'][:, attributes.index('baseY')], dtype='float64')
     target_y = np.array(arff_data['data'][:, attributes.index('targetY')], dtype='float64')
     X.append(np.abs((base_y - target_y) / np.maximum(np.abs(base_viewport - target_viewport), 1)))
     arff_data['features'] = arff_data['features'] + ['left_comp', 'right_comp', 'y_comp']
     return X
コード例 #23
0
def q_and_probs_from_engine_score(infos, probs, num_nodes, board, next_move_in_game):
    boosting_nodes = math.ceil((num_nodes / 0.7) - num_nodes)
    q = None
    total_visited_nodes = 0
    move_nodes = {}
    for i, info in enumerate(infos):
        if i == 0:
            q = info["score"].relative.score(mate_score=100) / 10000
        pythonchess_move = info['pv'][0]
        move = unclean_uci_move_to_lc0(pythonchess_move.uci(), board)
        node_count = info['nodes']

        total_visited_nodes += node_count
        move_nodes[move] = node_count

        if pythonchess_move == next_move_in_game:
            move_nodes[move] += boosting_nodes
            total_visited_nodes += boosting_nodes

    if total_visited_nodes == 0:
        raise Exception("somehow no moves visited in position, crashing")

    # create writeable probability array
    probs = np.array(probs)
    for move, node_count in move_nodes.items():
        probs[constants.MOVES_LOOKUP[move]] = node_count / total_visited_nodes
    return q, probs
コード例 #24
0
    def test_execute_extracts_platform_ids_with_position_viewport(self):
        arff_data = arff.load("""@RELATION browserninja.website
@ATTRIBUTE childsNumber NUMERIC
@ATTRIBUTE textLength NUMERIC
@ATTRIBUTE baseX NUMERIC
@ATTRIBUTE targetX NUMERIC
@ATTRIBUTE baseY NUMERIC
@ATTRIBUTE targetY NUMERIC
@ATTRIBUTE baseHeight NUMERIC
@ATTRIBUTE targetHeight NUMERIC
@ATTRIBUTE baseWidth NUMERIC
@ATTRIBUTE targetWidth NUMERIC
@ATTRIBUTE imageDiff NUMERIC
@ATTRIBUTE chiSquared NUMERIC
@ATTRIBUTE baseViewportWidth NUMERIC
@ATTRIBUTE targetViewportWidth NUMERIC
@ATTRIBUTE phash NUMERIC
@ATTRIBUTE basePlatform STRING
@ATTRIBUTE targetPlatform STRING
@ATTRIBUTE Result {0,1}
@DATA
13,17,1,2,3,4,5,6,7,8,100,0.12,360,360,0.3,'iOS 12.1 - Safari -- iOS - iPhone 8','iOS 12.1 - Safari -- iOS - iPhoneSE',1
0,0,100,150,20,15,10,15,20,33,1000,0.25,360,360,0.15,'iOS 12.1 - Safari -- iOS - iPhone 8','iOS 12.1 - Safari -- iOS - iPhone 8 Plus',1
""")
        arff_data['data'] = np.array(arff_data['data'])
        self.extractor = BrowserNinjaCompositeExtractor(
            class_attr='Result',
            extractors=[PlatformExtractor(),
                        PositionViewportExtractor()])
        result = self.extractor.execute(arff_data)
        self.assertEqual(1, result['X'][0][0])
        self.assertEqual(0, result['X'][1][0])
        self.assertEqual(['platform_id', 'left_comp', 'right_comp', 'y_comp'],
                         result['features'])
コード例 #25
0
    def test_execute_comparison_based_on_viewport_when_zero_happens(self):
        arff_data = arff.load(
            self.generate_arff("""13,17,1,2,3,4,5,6,7,8,100,0.12,360,360,0.3,0
0,0,100,150,20,15,10,15,20,33,1000,0.25,360,360,0.15,0""",
                               extractors=[
                                   ComplexityExtractor(),
                                   ImageComparisonExtractor(),
                                   SizeViewportExtractor(),
                                   VisibilityExtractor(),
                                   PositionViewportExtractor()
                               ]))
        arff_data['data'] = np.array(arff_data['data'])
        result = self.extractor.execute(arff_data)
        self.assertEqual(1, result['X'][0][10])
        self.assertEqual(2, result['X'][0][11])
        self.assertEqual(1, result['X'][0][12])
        self.assertEqual(50, result['X'][1][10])
        # 240 - 177
        self.assertEqual(63, result['X'][1][11])
        self.assertEqual(5, result['X'][1][12])
        self.assertEqual([
            'childsNumber', 'textLength', 'area', 'phash', 'chiSquared',
            'imageDiff', 'width_comp', 'height_comp', 'left_visibility',
            'right_visibility', 'left_comp', 'right_comp', 'y_comp'
        ], result['features'])
コード例 #26
0
def dh(theta, d, a, alpha):

    # First row of dh table
    A11 = np.cos(theta)
    A12 = -np.cos(alpha) * np.sin(theta)
    A13 = np.sin(alpha) * np.sin(theta)
    A14 = a * np.cos(theta)

    # second row of dh table
    A21 = np.sin(theta)
    A22 = np.cos(alpha) * np.cos(theta)
    A23 = -np.sin(alpha) * np.sin(theta)
    A24 = a * np.sin(theta)

    # third row of dh table
    A31 = 0
    A32 = np.sin(alpha)
    A33 = np.cos(alpha)
    A34 = d

    # fourth row of dh table
    A41 = 0
    A42 = 0
    A43 = 0
    A44 = 1
    A = 0
    A = np.array([[A11, A12, A13, A14], [A21, A22, A23, A24],
                  [A31, A32, A33, A34], [A41, A42, A43, A44]])

    return A
コード例 #27
0
    def detect(self, data):
        try:
            frame = self.bridge.imgmsg_to_cv2(data, "bgr8")
        except CvBridgeError as e:
            print(e)

        frame = imutils.resize(frame, width=400)
        cv2.imshow("Frame", frame)

        # grab the frame dimensions and convert it to a blob
        (h, w) = frame.shape[:2]
        blob = cv2.dnn.blobFromImage(cv2.resize(frame, (224, 224)), 0.007843,
                                     (224, 224), 127.5)

        # pass the blob through the network and obtain the detections and
        # predictions
        self.net.setInput(blob)
        detections = self.net.forward()

        rois = []

        # loop over the detections
        for i in np.arange(0, detections.shape[2]):
            # extract the confidence (i.e., probability) associated with
            # the prediction
            confidence = detections[0, 0, i, 2]

            # filter out weak detections by ensuring the `confidence` is
            # greater than the minimum confidence
            if confidence > self.args["confidence"]:
                # extract the index of the class label from the
                # `detections`, then compute the (x, y)-coordinates of
                # the bounding box for the object
                idx = int(detections[0, 0, i, 1])
                box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
                (startX, startY, endX, endY) = box.astype("int")

                # draw the prediction on the frame
                label = "{}: {:.2f}%".format(self.CLASSES[idx],
                                             confidence * 100)
                cv2.rectangle(frame, (startX, startY), (endX, endY),
                              self.COLORS[idx], 2)
                y = startY - 15 if startY - 15 > 15 else startY + 15
                cv2.putText(frame, label, (startX, y),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.5, self.COLORS[idx], 2)

                if self.CLASSES[idx] is "person":
                    rois.append((startX, startY, endX, endY))

            self.pub_roi(rois)

        # show the output frame
        cv2.imshow("Frame", frame)
        #key = cv2.waitKey(1) & 0xFF
        cv2.waitKey(3)

        #Only publish if we've detected a person
        #if (len(pick) > 0):
        #    try:
        self.image_pub.publish(self.bridge.cv2_to_imgmsg(frame, "bgr8"))
コード例 #28
0
    def test_extracts_features_from_different_data(self):
        arff_example = """@RELATION otherdata
@ATTRIBUTE supimpa  NUMERIC
@ATTRIBUTE nothing   NUMERIC
@ATTRIBUTE anotherr  NUMERIC
@ATTRIBUTE somethingelse   NUMERIC
@ATTRIBUTE anotherthing   NUMERIC
@ATTRIBUTE result        {xbi, none}
@DATA
1,2,3,4,5,none
6,7,8,9,10,none
11,12,13,14,15,none
16,17,18,19,20,none
21,22,23,24,25,none
26,27,28,29,30,xbi"""
        data = arff.load(arff_example)
        data['data'] = np.array(data['data'])
        extractor = XBIExtractor(['supimpa', 'somethingelse', 'nothing'],
                                 'result')
        result = extractor.execute(data)
        self.assertEqual(['supimpa', 'somethingelse', 'nothing'],
                         result['features'])
        self.assertEqual(6, len(result['X']))
        self.assertEqual(3, len(result['X'][3]))
        self.assertEqual(21.0, result['X'][4][0])
        self.assertEqual(24.0, result['X'][4][1])
        self.assertEqual(22.0, result['X'][4][2])
        self.assertEqual(6, len(result['y']))
        self.assertEqual('none', result['y'][0])
        self.assertEqual('xbi', result['y'][5])
コード例 #29
0
    def load(self, vectorizer):
        print('===== SE Embeddings loading from %s =====' %
              (self._gensim_file))
        self._se_embeddings = gensim.models.KeyedVectors.load_word2vec_format(
            self._gensim_file, binary=True)
        embedding_dim = self._embedding_dim
        self._vocab_size = len(
            vectorizer.vocabulary_
        ) + 1  # Adding again 1 because of reserved 0 index
        #self._embedding_matrix = np.zeros((self._vocab_size, embedding_dim))
        self._embedding_matrix = {}
        not_found = []

        for word in vectorizer.vocabulary_.keys():
            try:
                #idx = vectorizer.vocabulary_[word]
                #self._embedding_matrix[idx] = np.array(
                #    self._se_embeddings.get_vector(word), dtype=np.float32)[:embedding_dim]
                self._embedding_matrix[word] = np.array(
                    self._se_embeddings.get_vector(word),
                    dtype=np.float32)[:embedding_dim]
            except:
                not_found.append(word)

        print('Not in embedding: %s...' % (not_found))
        return self._embedding_matrix
コード例 #30
0
def interPolateFunc(data):  #data:n*3
    try:
        points = pandas.DataFrame(np.array(data))  #构造DataFame
        points.set_axis(['lon', 'lat', 'depth'], axis='columns',
                        inplace=True)  #重新设置列索引名称
        grid_x, grid_y = np.mgrid[min(points.iloc[:,
                                                  0]):max(points.iloc[:,
                                                                      0]):500j,
                                  min(points.iloc[:,
                                                  1]):max(points.iloc[:,
                                                                      1]):500j]
        values = points.iloc[:, 2]
        points2 = points.drop('depth', 1)  #去掉最后一列
        grid_z = griddata(points2, values, (grid_x, grid_y),
                          method='cubic')  #插值nearest,linear,cubic
        len_lon = len(grid_x)  #经度数据点数
        len_lat = len(grid_x[0])  #纬度数据点数
        depth = grid_z.tolist()  #深度数据
        lon_start = min(points.iloc[:, 0])  #经度起点
        lon_end = max(points.iloc[:, 0])  #经度终点
        lat_start = min(points.iloc[:, 1])  #纬度起点
        lat_end = max(points.iloc[:, 1])  #纬度终点
    except BaseException:
        len_lon = -1
        len_lat = -1
        return len_lon, len_lat
    else:
        return len_lon, len_lat, depth, lon_start, lon_end, lat_start, lat_end
コード例 #31
0
    def generate_arff(self, data, class_attr='Result'):
        arff_header = """@RELATION browserninja.website
@ATTRIBUTE baseX NUMERIC
@ATTRIBUTE targetX NUMERIC
@ATTRIBUTE baseY NUMERIC
@ATTRIBUTE targetY NUMERIC
@ATTRIBUTE baseHeight NUMERIC
@ATTRIBUTE targetHeight NUMERIC
@ATTRIBUTE baseWidth NUMERIC
@ATTRIBUTE targetWidth NUMERIC
@ATTRIBUTE baseParentX NUMERIC
@ATTRIBUTE targetParentX NUMERIC
@ATTRIBUTE baseParentY NUMERIC
@ATTRIBUTE targetParentY NUMERIC
@ATTRIBUTE baseViewportWidth NUMERIC
@ATTRIBUTE targetViewportWidth NUMERIC
@ATTRIBUTE basePreviousSiblingLeft NUMERIC
@ATTRIBUTE targetPreviousSiblingLeft NUMERIC
@ATTRIBUTE basePreviousSiblingTop NUMERIC
@ATTRIBUTE targetPreviousSiblingTop NUMERIC
@ATTRIBUTE baseNextSiblingLeft NUMERIC
@ATTRIBUTE targetNextSiblingLeft NUMERIC
@ATTRIBUTE baseNextSiblingTop NUMERIC
@ATTRIBUTE targetNextSiblingTop NUMERIC
@ATTRIBUTE childsNumber NUMERIC
@ATTRIBUTE textLength NUMERIC
@ATTRIBUTE %s {0,1}
@DATA
""" % (class_attr)
        arff_data = arff.load(arff_header + data)
        attributes = [attribute[0] for attribute in arff_data['attributes']]
        arff_data['data'] = np.array(arff_data['data'])
        arff_data['features'] = []
        return (arff_data, attributes)
コード例 #32
0
    def test_calculate_single_features_and_concatenate_with_existing_features(
            self):
        arff_data = arff.load("""@RELATION crosscheck
@ATTRIBUTE baseX NUMERIC
@ATTRIBUTE targetX NUMERIC
@ATTRIBUTE baseY NUMERIC
@ATTRIBUTE targetY NUMERIC
@ATTRIBUTE baseHeight NUMERIC
@ATTRIBUTE targetHeight NUMERIC
@ATTRIBUTE baseWidth NUMERIC
@ATTRIBUTE targetWidth NUMERIC
@ATTRIBUTE chiSquared NUMERIC
@ATTRIBUTE xbi {0,1}
@DATA
1,2,3,4,5,6,7,8,9,0
10,12,12,14,14,16,16,18,33,1""")
        arff_data['data'] = np.array(arff_data['data'])
        arff_data['X'] = np.array([[1, 2], [3, 4]])
        arff_data['features'] = ['something', 'other']
        extractor = CrossCheckExtractor(class_attr='xbi')
        result = extractor.execute(arff_data)
        self.assertEqual(2, len(result['X']))
        self.assertEqual([
            'something', 'other', 'area', 'displacement', 'sdr', 'chisquared'
        ], result['features'])
        self.assertEqual(6, len(result['X'][0]))
        self.assertEqual(1, result['X'][0][0])
        self.assertEqual(2, result['X'][0][1])
        self.assertEqual(35, result['X'][0][2])
        self.assertAlmostEqual(math.sqrt(2), result['X'][0][3], places=2)
        self.assertAlmostEqual((48 - 35) / 35, result['X'][0][4], places=2)
        self.assertEqual(9, result['X'][0][5])

        self.assertEqual(6, len(result['X'][1]))
        self.assertEqual(3, result['X'][1][0])
        self.assertEqual(4, result['X'][1][1])
        self.assertEqual(224, result['X'][1][2])
        self.assertAlmostEqual(2 * math.sqrt(2), result['X'][1][3], places=2)
        self.assertAlmostEqual((16 * 18 - 14 * 16) / (14 * 16),
                               result['X'][1][4],
                               places=2)
        self.assertEqual(33, result['X'][1][5])

        self.assertEqual(2, len(result['y']))
        self.assertEqual(0, result['y'][0])
        self.assertEqual(1, result['y'][1])
        self.assertEqual(arff_data['attributes'], result['attributes'])
コード例 #33
0
  def intializeBiases(cls, data, nrHidden):
    # get the procentage of data points that have the i'th unit on
    # and set the visible vias to log (p/(1-p))
    percentages = data.mean(axis=0, dtype='float')
    vectorized = np.vectorize(safeLogFraction, otypes=[np.float])
    visibleBiases = vectorized(percentages)

    hiddenBiases = np.zeros(nrHidden)
    return np.array([visibleBiases, hiddenBiases])
コード例 #34
0
 def _read(self, g, f):
     fi = self.ds.field_info[f]
     if fi.particle_type and g.NumberOfParticles == 0:
         # because this gets upcast to float
         return np.array([],dtype='float64')
     try:
         temp = self.ds.index.io._read_data_set(g, f)
     except:# self.ds.index.io._read_exception as exc:
         if fi.not_in_all:
             temp = np.zeros(g.ActiveDimensions, dtype='float64')
         else:
             raise
     return temp
コード例 #35
0
ファイル: TetraBucket.py プロジェクト: colintsteele/Tetris
    def rotate(self):
        'method to rotate the given tetra in place using numpy'
        print(self.getCoords())

        #this makes sure the tetra cannot rotate itself out of bounds on the right edge
        for i in self.getCoords():
            if i[0] >9:
                self.move('left')

        #todo make sure the tetras rotated state will not overlap other tetras

        self.activeTetra.orientation = np.rot90(np.array(self.activeTetra.orientation), 1)

        self.render(self.activeTetra)
コード例 #36
0
 def __init__(self, patterns):
     self.patterns = np.array(patterns)
コード例 #37
0
ファイル: test_np.py プロジェクト: k7hoven/np
 def test_0D(self, sc, dtype):
     self.assertIdenticalArray(sc(3), np.array(3, dtype=dtype))
コード例 #38
0
ファイル: test_np.py プロジェクト: k7hoven/np
 def test_mixed_values(self, sc, dtype):
     self.assertIdenticalArray(sc([1,2.3,4,5.6]), np.array([1,2.3,4,5.6], dtype=dtype))
コード例 #39
0
ファイル: test_np.py プロジェクト: k7hoven/np
 def test_3D(self):
     a3d = np.arange(12).reshape((2,3,2))
     self.assertIdenticalArray(np(a3d), np.array(a3d))
コード例 #40
0
ファイル: test_np.py プロジェクト: k7hoven/np
 def test_matrix_doublecolon(self, sc, dtype):
     self.assertIdenticalArray(sc[1,2:
                                 :3,4:
                                 :5,6], np.array([[1,2],[3,4],[5,6]], dtype=dtype))
コード例 #41
0
ファイル: cnn_with_data.py プロジェクト: Tell1/dataset-utils
def main():

    #### Data ####

    # fake A/C params
    pi=np.array([0.1,0.9])
    a=np.array([[0.95,0.05],[0.05,0.95]])
    mean=np.array([[0],[1500]])
    cov=np.array([[[ 1.]],[[ 10]]])
    model=hmm.GaussianHMM(pi.size, "full", pi,a)
    model.means_ = mean
    model.covars_ = cov

    # randomly sample one day of data
    length = 4 * 24
    power, state = model.sample(length)

    #### CNN ####
    learning_rate = 0.1
    rng = np.random.RandomState(23455)

    ishape = (length, 1)  # this is the size of our input data
    batch_size = 20  # size of the minibatch

    # allocate symbolic variables for the data
    x = T.matrix('x')  # generated power levels
    y = T.lvector('y')  # generate states

    ##############################
    # BEGIN BUILDING ACTUAL MODEL
    ##############################

    # Reshape matrix of rasterized images of shape (batch_size,length,1)
    # to a 4D tensor, compatible with our ConvPoolLayer
    layer0_input = x.reshape((batch_size,1,length,1))

    # Construct the first convolutional pooling layer:
    # filtering reduces the image size to (96-3+1,1-1+1)=(94,1)
    # maxpooling reduces this further to (94/2,1/1) = (47,1)
    # 4D output tensor is thus of shape (20,20,47,1)
    layer0 = LeNetConvPoolLayer(rng, input=layer0_input,
            image_shape=(batch_size, 1, length, 1),
            filter_shape=(20, 1, 3, 1), poolsize=(3, 1))

    # Construct the second convolutional pooling layer
    # filtering reduces the image size to (12 - 5 + 1, 12 - 5 + 1)=(8, 8)
    # maxpooling reduces this further to (8/2,8/2) = (4, 4)
    # 4D output tensor is thus of shape (20,50,4,4)
    #layer1 = LeNetConvPoolLayer(rng, input=layer0.output,
    #        image_shape=(batch_size, 20, 12, 12),
    #        filter_shape=(50, 20, 5, 5), poolsize=(2, 2))

    # the HiddenLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size,num_pixels) (i.e matrix of rasterized images).
    # This will generate a matrix of shape (20, 20 * 47 * 1)
    layer2_input = layer0.output.flatten(2)

    # construct a fully-connected sigmoidal layer
    layer2 = HiddenLayer(rng, input=layer2_input,
                         n_in=20*47*1, n_out=50,
                         activation=T.tanh    )

    # classify the values of the fully-connected sigmoidal layer
    layer3 = LogisticRegression(input=layer2.output, n_in=50, n_out=1)


    # the cost we minimize during training is the NLL of the model
    cost = layer3.negative_log_likelihood(y)

    # create a function to compute the mistakes that are made by the model
    test_model = theano.function([x, y], layer3.errors(y))

    # create a list of all model parameters to be fit by gradient descent
    params = layer3.params + layer2.params + layer1.params + layer0.params

    # create a list of gradients for all model parameters
    grads = T.grad(cost, params)

    # train_model is a function that updates the model parameters by SGD
    # Since this model has many parameters, it would be tedious to manually
    # create an update rule for each model parameter. We thus create the updates
    # dictionary by automatically looping over all (params[i],grads[i])  pairs.
    updates = []
    for param_i, grad_i in zip(params, grads):
        updates.append((param_i, param_i - learning_rate * grad_i))
    train_model = theano.function([index], cost, updates = updates,
            givens={
                x: train_set_x[index * batch_size: (index + 1) * batch_size],
                y: train_set_y[index * batch_size: (index + 1) * batch_size]})
コード例 #42
0
ファイル: test_np.py プロジェクト: k7hoven/np
 def test_mixed_values(self, sc, dtype):
     self.assertIdenticalArray(sc[1,2.3:4,5.6], np.array([[1,2.3],[4,5.6]], dtype=dtype))
コード例 #43
0
ファイル: test_np.py プロジェクト: k7hoven/np
 def test_3D(self):
     a3d = np.arange(12).reshape((2,3,2))
     self.assertIdenticalArray(np[[[ 0,  1], [ 2,  3], [ 4,  5]],
                                  [[ 6,  7], [ 8,  9], [10, 11]]],
                               np.array(a3d))
コード例 #44
0
ファイル: test_np.py プロジェクト: k7hoven/np
 def test_1D(self):
     self.assertIdenticalArray(np([1,3,4,5,6,9]), np.array([1,3,4,5,6,9]))
コード例 #45
0
ファイル: test_np.py プロジェクト: k7hoven/np
 def test_2D(self, sc, dtype):
     a2d = np.arange(12).reshape((3,4))
     self.assertIdenticalArray(sc(a2d), np.array(a2d, dtype=dtype))                                  
コード例 #46
0
ファイル: test_np.py プロジェクト: k7hoven/np
 def test_mixed_values(self):
     self.assertIdenticalArray(np([1,2.3,4,5.6]), np.array([1,2.3,4,5.6]))
コード例 #47
0
ファイル: test_np.py プロジェクト: k7hoven/np
 def test_3D(self, sc, dtype):
     a3d = np.arange(12).reshape((2,3,2))
     self.assertIdenticalArray(sc(a3d), np.array(a3d, dtype=dtype))
コード例 #48
0
ファイル: test_np.py プロジェクト: k7hoven/np
 def test_float_values(self):
     self.assertIdenticalArray(np([1.0, 2.0]), np.array([1.0,2.0]))
コード例 #49
0
ファイル: test_np.py プロジェクト: k7hoven/np
 def test_1D(self, sc, dtype):
     self.assertIdenticalArray(sc[1,3,4,5,6,9], np.array([1,3,4,5,6,9], dtype=dtype))
コード例 #50
0
ファイル: test_np.py プロジェクト: k7hoven/np
 def test_float_values(self, sc, dtype):
     self.assertIdenticalArray(sc[1.0, 2.0: 3.0, 4.0], np.array([[1.0, 2.0],[3.0,4.0]], dtype=dtype))
コード例 #51
0
ファイル: test_np.py プロジェクト: k7hoven/np
 def test_mixed_values(self):
     self.assertIdenticalArray(np.m[1,2.3:4,5.6], np.array([[1,2.3],[4,5.6]]))
コード例 #52
0
from transform import four_point_transform
import np
import argparse
import cv2

ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", help = "path to image file")
ap.add_argument("-c", "--coords", help = "comma seperated list of source pointer")
args = vars(ap.parse_args())


image = cv2.imread(args["image"])
pts = np.array(eval(args["coords"]), dtype = "float32")

warped = four_point_transform(image, pts)

cv2.imshow("original", image)
cv2.imshow("warped", warped)
cv2.waitKey(0)
コード例 #53
0
ファイル: test_np.py プロジェクト: k7hoven/np
 def test_matrix_doublecolon(self):
     self.assertIdenticalArray(np.m[1,2:
                                   :3,4:
                                   :5,6], np.array([[1,2],[3,4],[5,6]]))
コード例 #54
0
ファイル: __init__.py プロジェクト: RicherMans/DigitalIMP
def extractReal(img):
    return np.array([[(img[j][i]).real for i in range(len(img))] for j in range(len(img[0]))])
コード例 #55
0
ファイル: test_np.py プロジェクト: k7hoven/np
 def test_row(self):
     self.assertIdenticalArray(np.m[1,2,3], np.array([[1,2,3]]))
コード例 #56
0
ファイル: test_np.py プロジェクト: k7hoven/np
 def test_float_values(self):
     self.assertIdenticalArray(np.m[1.0, 2.0: 3.0, 4.0], np.array([[1.0, 2.0],[3.0,4.0]]))
コード例 #57
0
ファイル: test_np.py プロジェクト: k7hoven/np
 def test_float_values(self, sc, dtype):
     self.assertIdenticalArray(sc([1.0, 2.0]), np.array([1.0,2.0], dtype=dtype))
コード例 #58
0
ファイル: test_np.py プロジェクト: k7hoven/np
 def test_2D(self):
     a2d = np.arange(12).reshape((3,4))
     self.assertIdenticalArray(np(a2d), np.array(a2d))                                  
コード例 #59
0
ファイル: test_np.py プロジェクト: k7hoven/np
 def test_0D(self):
     self.assertIdenticalArray(np(3), np.array(3))
コード例 #60
0
ファイル: test_np.py プロジェクト: k7hoven/np
 def test_2D(self):
     a2d = np.arange(12).reshape((3,4))
     self.assertIdenticalArray(np[[0,1,2,3],[4,5,6,7],[8,9,10,11]],
                               np.array(a2d))