コード例 #1
0
def grad2d(x):
    if prg is None:
        build(x)
    queue = x.queue
    gx = npcl.zeros_like(x)
    gy = npcl.zeros_like(x)
    prg.grad(queue, x.shape[::-1], None, x.data, gx.data, gy.data)
    return gx, gy
コード例 #2
0
def divergence2d(px, py):
    if prg is None:
        build(px)
    queue = px.queue
    d = npcl.zeros_like(px)
    prg.divergence2d(queue, d.shape[::-1], None, px.data, py.data, d.data)
    return d
コード例 #3
0
def norm2d(gx, gy):
    if prg is None:
        build(gx)
    queue = gx.queue
    norm = npcl.zeros_like(gx)
    prg.norm(queue, norm.shape[::-1], None, gx.data, gy.data, norm.data)
    return norm
コード例 #4
0
def denoise_tv(image, weight=0.1, eps=2.e-4, n_iter_max=100):
    img_dev = image.copy()
    ndim = 2
    weight = np.float32(weight)
    eps = np.float32(eps)
    px = npcl.zeros_like(image)
    py = npcl.zeros_like(image)
    d = npcl.zeros_like(image)
    tau = np.float32(1/(2.*ndim))
    N = np.float32(img_dev.shape[0]*img_dev.shape[1])
    i = 0
    while i < n_iter_max:
        if i > 0:
            # d will be the (negative) divergence of p
            d = divergence2d(px, py)
            d = -d
            out = img_dev + d
        else:
            out = img_dev
        E = npcl.sum((d ** 2)).get()
        # (gx, gy) stores the gradients of out along each axis
        gx, gy = grad2d(out)
        norm = norm2d(gx, gy)
        E += weight*npcl.sum(norm).get()
        norm *= tau/weight
        norm += np.float32(1)
        px = px-tau*gx
        py = py-tau*gy
        px /= norm
        py /= norm
        E /= N
        if i == 0:
            E_init = E
            E_previous = E
        else:
            if np.abs(E_previous-E) < eps * E_init:
                break
            else:
                E_previous = E
        i += 1
    return out
コード例 #5
0
def inpaint_tv(
        img,
        mask,
        mu=np.float32(1e-2),
        gamma=np.float32(1e-1),
        tol=np.float32(1e-4),
        max_iter=1000,
        verbose=False,
):
    """
    Total Variation Inpainting with Split Bregman method.
    """
    def masked_laplacian(x):
        px = convolve(x, dx)
        py = convolve(x, dy)
        qx = convolve(mask * px, dxT)
        qy = convolve(mask * py, dyT)
        return qx + qy

    def masked_divergence(px, py):
        qx = convolve(mask * px, dxT)
        qy = convolve(mask * py, dyT)
        return qx + qy

    def A(x):
        return (1 - mask) * x + gamma * masked_laplacian(x)

    d1, d2, b1, b2, uf, ul = [npcl.zeros_like(img) for _ in range(6)]
    img_norm = npcl.sum(img**2)

    for k in range(max_iter):
        # u-subproblem
        b = (1 - mask) * img + gamma * masked_divergence(d1 - b1, d2 - b2)
        ul, k_sub = solve_cg(A, b, uf, max_iter=10)
        # d-subproblem
        u1 = convolve(ul, dx)
        u2 = convolve(ul, dy)
        d1, d2 = shrink(u1 + b1, u2 + b2, mu * mask / gamma)
        b1 = b1 + u1 - d1
        b2 = b2 + u2 - d2
        gap = npcl.sum((ul - uf)**2) / img_norm
        if verbose is True:
            print(
                'iteration number: ',
                k + 1,
                ', gap: ',
                gap.get(),
            )
        if gap < tol**2:
            break
        uf = ul.copy()
    return uf, k
コード例 #6
0
def convolve2d_sv(x, k, padding='zero'):
    r"""
    Compute 2D spatially-variant convolution.

    This function computes
        y_{i, j} = \sum_{k, l} k_{k, l, i, j} x_{i + k, j + l},
    where k : convolutional kernel.

    Inputs:
        x : input array (2D).
        k : convolutional kernel array (4D).
            dimensions : kernel window (2D) x image size (2D)

    Outputs:
        y : output array.
    """
    if prg is None:
        build(x)
    if padding == 'zero':
        run_kernel = prg.convolve2d_sv_z
    elif padding == 'same':
        run_kernel = prg.convolve2d_sv_s
    elif padding == 'wrap':
        run_kernel = prg.convolve2d_sv_w
    queue = x.queue
    res = npcl.zeros_like(x)
    run_kernel(
        queue,
        x.shape[::-1],
        None,
        x.data,
        k.data,
        res.data,
        np.int32(k.shape[0]),
        np.int32(k.shape[1]),
    )
    return res
コード例 #7
0
def solve_flb(
        A,
        AT,
        b,
        delta=np.float32(5e-4),
        mu=np.float32(2e4),
        tol=np.float32(1e-5),
        stuck=np.float32(1e-2),
        verbose=False,
        max_iter=5000,
):
    """
    Fast Linearized Bregman (FLB) Method.

    This function solves the following problem:
        minimize |x|_1 subject to Ax=b

    Inputs:
        ATA : a python function that computes A^TAx, i.e.,
            ATA(x) = A^TAx
            for a vector (pyopencl.array.Array) x.
        AT : a python function that computes ATx, i.e.,
            AT(x) = ATx
            for a vector (pyopencl.array.Array) x.
        b : (pyopencl.array.Array) represents the vector b.
        delta : (np.float32) parameter for gradient update step.
        mu : (np.float32) l1 regularization parameter.
        tol : (np.float32) represents tolerence value.
        stuck: (np.float32) represents stuck constant
        max_iter : maximum number of iterations.

    Outputs:
        x : (pyopencl.array.Array) the solution x.
        k : (int) the total iteration number.
    """
    ATb = AT(b)

    def ATA(x):
        return AT(A(x))

    def norm(x):
        return npcl.sum(npcl.fabs(x)).get()

    x = npcl.zeros_like(ATb)
    v = x.copy()
    normb = norm(b)
    kick_test = [0 for i in range(5)]
    k = 0
    while True:
        k += 1
        v += (ATb - ATA(x))
        x_new = delta * soft_shrink(v, mu)
        residual = np.log(norm(A(x_new) - b))
        if verbose is True:
            print('iteration number: ', k, 'log residual: ', residual)
        kick_test = kick_test[-4:] + [residual]
        if min(kick_test) + stuck > max(kick_test):
            k += 1
            I_0 = (x_new == 0.).astype(np.float32)
            r = ATb - ATA(x_new)
            s = ((mu * sign(r) - v) / r).astype(np.int32) * I_0
            smin = np.float32(npcl.min(s + 1e7 * (1 - I_0)).get())
            if smin <= 2:
                v += r
            else:
                v += smin * I_0 * r
            x_new = delta * soft_shrink(v, mu)
            if verbose is True:
                print(
                    'kicking occured at iteration number: ',
                    k,
                    'log residual: ',
                    residual,
                )
        r_new = A(x_new) - b
        if norm(r_new) < normb * tol:
            break
        if k >= max_iter:
            break
        x = x_new.copy()
    return x_new, k
コード例 #8
0
def convolve2d(x, k, padding='zero'):
    """
    Compute 2D convolution.

    This function computes
        y = (k*x),
    where k : convolutional kernel.

    Inputs:
        x : input array.
        k : convolutional kernel array.

    Outputs:
        y : output array.
    """
    if prg is None:
        build(x)
    if use_local_mem(k.shape):
        if padding == 'zero':
            run_kernel = prg.convolve2d_loc_z
        elif padding == 'same':
            run_kernel = prg.convolve2d_loc_s
        elif padding == 'wrap':
            run_kernel = prg.convolve2d_loc_w
        queue = x.queue
        res = npcl.zeros_like(x)
        padded_shape = (
            x.shape[0] + (-x.shape[0]) % TS,
            x.shape[1] + (-x.shape[1]) % TS,
        )
        cache_size = 4 * (TS + 2 * (k.shape[0] // 2)) * (TS + 2 *
                                                         (k.shape[1] // 2))
        if 'intel' not in prg.context.devices[0].vendor.lower(
        ) or x.shape == padded_shape:
            run_kernel(
                queue,
                padded_shape[::-1],
                (TS, TS),
                x.data,
                k.data,
                cl.LocalMemory(cache_size),
                res.data,
                np.int32(x.shape[0]),
                np.int32(x.shape[1]),
                np.int32(k.shape[0]),
                np.int32(k.shape[1]),
            )
            return res

    if padding == 'zero':
        run_kernel = prg.convolve2d_z
    elif padding == 'same':
        run_kernel = prg.convolve2d_s
    elif padding == 'wrap':
        run_kernel = prg.convolve2d_w
    queue = x.queue
    res = npcl.zeros_like(x)
    run_kernel(
        queue,
        x.shape[::-1],
        None,
        x.data,
        k.data,
        res.data,
        np.int32(k.shape[0]),
        np.int32(k.shape[1]),
    )
    return res