def store_data(self, fasta, phylip): # self.alg_fasta_file = db.add_task_data(self.taskid, DATATYPES.alg_fasta, # fasta) # self.alg_phylip_file = db.add_task_data(self.taskid, # DATATYPES.alg_phylip, phylip) db.add_task_data(self.taskid, DATATYPES.alg_fasta, fasta) db.add_task_data(self.taskid, DATATYPES.alg_phylip, phylip)
def finish(self): # Once executed, alignment is converted into relaxed # interleaved phylip format. alg = SeqGroup(os.path.join(self.jobs[0].jobdir, "mcoffee.fasta")) fasta = alg.write(format="fasta") phylip = alg.write(format="iphylip_relaxed") alg_list_string = '\n'.join([pjoin(GLOBALS["input_dir"], aname) for aname in self.all_alg_files]) db.add_task_data(self.taskid, DATATYPES.alg_list, alg_list_string) AlgTask.store_data(self, fasta, phylip)
def process_task(task, wkname, npr_conf, nodeid2info): cogconf, cogclass = npr_conf.cog_selector concatconf, concatclass = npr_conf.alg_concatenator treebuilderconf, treebuilderclass = npr_conf.tree_builder splitterconf, splitterclass = npr_conf.tree_splitter threadid, nodeid, seqtype, ttype = (task.threadid, task.nodeid, task.seqtype, task.ttype) cladeid, targets, outgroups = db.get_node_info(threadid, nodeid) if not treebuilderclass or task.size < 4: # Allows to dump algs in workflows with no tree tasks or if tree # inference does not make sense given the number of sequences. DummyTree # will produce a fake fully collapsed newick tree. treebuilderclass = DummyTree if outgroups and len(outgroups) > 1: constrain_id = nodeid else: constrain_id = None node_info = nodeid2info[nodeid] conf = GLOBALS[task.configid] new_tasks = [] if ttype == "cog_selector": # Generates a md5 id based on the genetree configuration workflow used # for the concat alg task. If something changes, concat alg will change # and the associated tree will be rebuilt config_blocks = set([wkname]) for key, value in conf[wkname].iteritems(): if isinstance(value, list) or isinstance(value, tuple) \ or isinstance(value, set): for elem in value: config_blocks.add(elem[1:]) if isinstance(elem, str) and elem.startswith("@") else None elif isinstance(value, str): config_blocks.add(value[1:]) if value.startswith("@") else None config_checksum = md5(''.join(["[%s]\n%s" %(x, dict_string(conf[x])) for x in sorted(config_blocks)])) # THIS PART HAS BEEN MOVED TO COG_SELECTOR TASK # Check that current selection of cogs will cover all target and # outgroup species #cog_hard_limit = int(conf[concatconf]["_max_cogs"]) #sp_repr = defaultdict(int) #for co in task.raw_cogs[:cog_hard_limit]: # for sp, seq in co: # sp_repr[sp] += 1 #missing_sp = (targets | outgroups) - set(sp_repr.keys()) #if missing_sp: # raise TaskError("missing species under current cog selection: %s" %missing_sp) #else: # log.log(28, "Analysis of current COG selection:") # for sp, ncogs in sorted(sp_repr.items(), key=lambda x:x[1]): # log.log(28, " % 30s species present in % 6d COGs" %(sp, ncogs)) # register concat alignment task. NodeId associated to concat_alg tasks # and all its children jobs should take into account cog information and # not only species and outgroups included. concat_job = concatclass(task.cogs, seqtype, conf, concatconf, config_checksum) db.add_node(threadid, concat_job.nodeid, cladeid, targets, outgroups) # Register Tree constrains constrain_tree = "(%s, (%s));" %(','.join(sorted(outgroups)), ','.join(sorted(targets))) _outs = "\n".join(map(lambda name: ">%s\n0" %name, sorted(outgroups))) _tars = "\n".join(map(lambda name: ">%s\n1" %name, sorted(targets))) constrain_alg = '\n'.join([_outs, _tars]) db.add_task_data(concat_job.nodeid, DATATYPES.constrain_tree, constrain_tree) db.add_task_data(concat_job.nodeid, DATATYPES.constrain_alg, constrain_alg) db.dataconn.commit() # since the creation of some Task objects # may require this info, I need to commit # right now. concat_job.size = task.size new_tasks.append(concat_job) elif ttype == "concat_alg": # register tree for concat alignment, using constraint tree if # necessary alg_id = db.get_dataid(task.taskid, DATATYPES.concat_alg_phylip) try: parts_id = db.get_dataid(task.taskid, DATATYPES.model_partitions) except ValueError: parts_id = None nodeid2info[nodeid]["size"] = task.size nodeid2info[nodeid]["target_seqs"] = targets nodeid2info[nodeid]["out_seqs"] = outgroups tree_task = treebuilderclass(nodeid, alg_id, constrain_id, None, task.seqtype, conf, treebuilderconf, parts_id=parts_id) tree_task.size = task.size new_tasks.append(tree_task) elif ttype == "tree": merger_task = splitterclass(nodeid, seqtype, task.tree_file, conf, splitterconf) merger_task.size = task.size new_tasks.append(merger_task) elif ttype == "treemerger": # Lets merge with main tree if not task.task_tree: task.finish() log.log(24, "Saving task tree...") annotate_node(task.task_tree, task) db.update_node(nid=task.nodeid, runid=task.threadid, newick=db.encode(task.task_tree)) db.commit() if not isinstance(treebuilderclass, DummyTree) and npr_conf.max_iters > 1: current_iter = get_iternumber(threadid) if npr_conf.max_iters and current_iter >= npr_conf.max_iters: log.warning("Maximum number of iterations reached!") else: # Add new nodes source_seqtype = "aa" if "aa" in GLOBALS["seqtypes"] else "nt" ttree, mtree = task.task_tree, task.main_tree log.log(26, "Processing tree: %s seqs, %s outgroups", len(targets), len(outgroups)) target_cladeids = None if tobool(conf[splitterconf].get("_find_ncbi_targets", False)): tcopy = mtree.copy() ncbi.connect_database() tax2name, tax2track = ncbi.annotate_tree_with_taxa(tcopy, None) #tax2name, tax2track = ncbi.annotate_tree_with_taxa(tcopy, "fake") # for testing sptree example n2content = tcopy.get_cached_content() broken_branches, broken_clades, broken_clade_sizes, tax2name = ncbi.get_broken_branches(tcopy, n2content) log.log(28, 'restricting NPR to broken clades: '+ colorify(', '.join(map(lambda x: "%s"%tax2name[x], broken_clades)), "wr")) target_cladeids = set() for branch in broken_branches: print branch.get_ascii(attributes=['spname', 'taxid'], compact=True) print map(lambda x: "%s"%tax2name[x], broken_branches[branch]) target_cladeids.add(branch.cladeid) for node, seqs, outs, wkname in get_next_npr_node(task.configid, ttree, task.out_seqs, mtree, None, npr_conf, target_cladeids): # None is to avoid alg checks log.log(24, "Adding new node: %s seqs, %s outgroups", len(seqs), len(outs)) new_task_node = cogclass(seqs, outs, source_seqtype, conf, cogconf) new_task_node.target_wkname = wkname new_tasks.append(new_task_node) db.add_node(threadid, new_task_node.nodeid, new_task_node.cladeid, new_task_node.targets, new_task_node.outgroups) return new_tasks
def store_data(self, cogs, cog_analysis): db.add_task_data(self.taskid, DATATYPES.cogs, cogs) db.add_task_data(self.taskid, DATATYPES.cog_analysis, cog_analysis) self.cogs = cogs self.cog_analysis = cog_analysis
def store_data(self, fasta, phylip, partitions): db.add_task_data(self.taskid, DATATYPES.model_partitions, partitions) db.add_task_data(self.taskid, DATATYPES.concat_alg_fasta, fasta) db.add_task_data(self.taskid, DATATYPES.concat_alg_phylip, phylip)
def store_data(self, newick, stats): db.add_task_data(self.taskid, DATATYPES.tree, newick) db.add_task_data(self.taskid, DATATYPES.tree_stats, stats) self.stats = stats
def store_data(self, best_model, ranking): db.add_task_data(self.taskid, DATATYPES.best_model, best_model) db.add_task_data(self.taskid, DATATYPES.model_ranking, ranking) self.best_model = best_model self.model_ranking[:] = [] self.model_ranking.extend(ranking)
def store_data(self, fasta, phylip, kept_columns): db.add_task_data(self.taskid, DATATYPES.clean_alg_fasta, fasta) db.add_task_data(self.taskid, DATATYPES.clean_alg_phylip, phylip) db.add_task_data(self.taskid, DATATYPES.kept_alg_columns, kept_columns) self.kept_columns[:] = [] # security clear self.kept_columns.extend(kept_columns)
def store_data(self, msf): db.add_task_data(self.taskid, DATATYPES.msf, msf)
def process_task(task, wkname, npr_conf, nodeid2info): alignerconf, alignerclass = npr_conf.aligner cleanerconf, cleanerclass = npr_conf.alg_cleaner mtesterconf, mtesterclass = npr_conf.model_tester treebuilderconf, treebuilderclass = npr_conf.tree_builder if not treebuilderclass: # Allows to dump algs in workflows with no tree tasks treebuilderclass = DummyTree splitterconf, splitterclass = npr_conf.tree_splitter conf = GLOBALS[task.configid] seqtype = task.seqtype nodeid = task.nodeid ttype = task.ttype taskid = task.taskid threadid = task.threadid node_info = nodeid2info[nodeid] size = task.size#node_info.get("size", 0) target_seqs = node_info.get("target_seqs", []) out_seqs = node_info.get("out_seqs", []) if not treebuilderclass or size < 4: # Allows to dump algs in workflows with no tree tasks or if tree # inference does not make sense given the number of sequences. DummyTree # will produce a fake fully collapsed newick tree. treebuilderclass = DummyTree mtesterclass = None # If more than one outgroup are used, enable the use of constrain if out_seqs and len(out_seqs) > 1: constrain_id = nodeid else: constrain_id = None new_tasks = [] if ttype == "msf": # Register Tree constrains constrain_tree = "(%s, (%s));" %(','.join(sorted(task.out_seqs)), ','.join(sorted(task.target_seqs))) _outs = "\n".join(map(lambda name: ">%s\n0" %name, sorted(task.out_seqs))) _tars = "\n".join(map(lambda name: ">%s\n1" %name, sorted(task.target_seqs))) constrain_alg = '\n'.join([_outs, _tars]) db.add_task_data(nodeid, DATATYPES.constrain_tree, constrain_tree) db.add_task_data(nodeid, DATATYPES.constrain_alg, constrain_alg) db.dataconn.commit() # since the creation of some Task # objects may require this info, I need # to commit right now. # Register node db.add_node(task.threadid, task.nodeid, task.cladeid, task.target_seqs, task.out_seqs) nodeid2info[nodeid]["size"] = task.size nodeid2info[nodeid]["target_seqs"] = task.target_seqs nodeid2info[nodeid]["out_seqs"] = task.out_seqs alg_task = alignerclass(nodeid, task.multiseq_file, seqtype, conf, alignerconf) alg_task.size = task.size new_tasks.append(alg_task) elif ttype == "alg" or ttype == "acleaner": if ttype == "alg": nodeid2info[nodeid]["alg_path"] = task.alg_fasta_file elif ttype == "acleaner": nodeid2info[nodeid]["alg_clean_path"] = task.clean_alg_fasta_file alg_fasta_file = getattr(task, "clean_alg_fasta_file", task.alg_fasta_file) alg_phylip_file = getattr(task, "clean_alg_phylip_file", task.alg_phylip_file) # Calculate alignment stats # cons_mean, cons_std = get_trimal_conservation(task.alg_fasta_file, # conf["app"]["trimal"]) # # max_identity = get_trimal_identity(task.alg_fasta_file, # conf["app"]["trimal"]) # log.info("Conservation: %0.2f +-%0.2f", cons_mean, cons_std) # log.info("Max. Identity: %0.2f", max_identity) #import time #t1 = time.time() #mx, mn, mean, std = get_identity(task.alg_fasta_file) #print time.time()-t1 #log.log(26, "Identity: max=%0.2f min=%0.2f mean=%0.2f +- %0.2f", # mx, mn, mean, std) #t1 = time.time() if seqtype == "aa" and npr_conf.switch_aa_similarity < 1: try: alg_stats = db.get_task_data(taskid, DATATYPES.alg_stats) except Exception, e: alg_stats = {} if ttype == "alg": algfile = pjoin(GLOBALS["input_dir"], task.alg_phylip_file) dataid = DATATYPES.alg_phylip elif ttype == "acleaner": algfile = pjoin(GLOBALS["input_dir"], task.clean_alg_phylip_file) dataid = DATATYPES.clean_alg_phylip if "i_mean" not in alg_stats: log.log(24, "Calculating alignment stats...") # dump data if necesary algfile = pjoin(GLOBALS["input_dir"], task.alg_phylip_file) if not pexist(algfile): # dump phylip alg open(algfile, "w").write(db.get_data(db.get_dataid(taskid, dataid))) mx, mn, mean, std = get_statal_identity(algfile, conf["app"]["statal"]) alg_stats = {"i_max":mx, "i_mean":mean, "i_min":mn, "i_std":std} db.add_task_data(taskid, DATATYPES.alg_stats, alg_stats) log.log(22, "Alignment stats (sequence similarity):") log.log(22, " max: %(i_max)0.2f, min:%(i_min)0.2f, avg:%(i_mean)0.2f+-%(i_std)0.2f" % (alg_stats)) else: alg_stats = {"i_max":-1, "i_mean":-1, "i_min":-1, "i_std":-1} #print time.time()-t1 #log.log(24, "Identity: max=%0.2f min=%0.2f mean=%0.2f +- %0.2f", # mx, mn, mean, std) task.max_ident = alg_stats["i_max"] task.min_ident = alg_stats["i_min"] task.mean_ident = alg_stats["i_mean"] task.std_ident = alg_stats["i_std"] next_task = None if ttype == "alg" and cleanerclass: next_task = cleanerclass(nodeid, seqtype, alg_fasta_file, alg_phylip_file, conf, cleanerconf) else: # Converts aa alignment into nt if necessary if seqtype == "aa" and \ "nt" in GLOBALS["seqtypes"] and \ task.mean_ident >= npr_conf.switch_aa_similarity: log.log(28, "@@2:Switching to codon alignment!@@1: amino-acid sequence similarity: %0.2f >= %0.2f" %\ (task.mean_ident, npr_conf.switch_aa_similarity)) alg_fasta_file = "%s.%s" %(taskid, DATATYPES.alg_nt_fasta) alg_phylip_file = "%s.%s" %(taskid, DATATYPES.alg_nt_phylip) try: alg_fasta_file = db.get_dataid(taskid, DATATYPES.alg_nt_fasta) alg_fasta_file = db.get_dataid(taskid, DATATYPES.alg_nt_phylip) except ValueError: log.log(22, "Calculating codon alignment...") source_alg = pjoin(GLOBALS["input_dir"], task.alg_fasta_file) if ttype == "alg": kept_columns = [] elif ttype == "acleaner": # if original alignment was trimmed, use it as reference # but make the nt alignment only on the kept columns kept_columns = db.get_task_data(taskid, DATATYPES.kept_alg_columns) if not pexist(source_alg): open(source_alg, "w").write(db.get_task_data(taskid, DATATYPES.alg_fasta)) nt_alg = switch_to_codon(source_alg, kept_columns=kept_columns) db.add_task_data(taskid, DATATYPES.alg_nt_fasta, nt_alg.write()) db.add_task_data(taskid, DATATYPES.alg_nt_phylip, nt_alg.write(format='iphylip_relaxed')) npr_conf = IterConfig(conf, wkname, task.size, "nt") seqtype = "nt" if mtesterclass: next_task = mtesterclass(nodeid, alg_fasta_file, alg_phylip_file, constrain_id, conf, mtesterconf) elif treebuilderclass: next_task = treebuilderclass(nodeid, alg_phylip_file, constrain_id, None, seqtype, conf, treebuilderconf) if next_task: next_task.size = task.size new_tasks.append(next_task)